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Abstract 

In the last few years, the deep learning (DL) computing paradigm has been deemed 
the Gold Standard in the machine learning (ML) community. Moreover, it has gradually 
become the most widely used computational approach in the field of ML, thus achiev‑
ing outstanding results on several complex cognitive tasks, matching or even beating 
those provided by human performance. One of the benefits of DL is the ability to learn 
massive amounts of data. The DL field has grown fast in the last few years and it has 
been extensively used to successfully address a wide range of traditional applications. 
More importantly, DL has outperformed well‑known ML techniques in many domains, 
e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, 
and medical information processing, among many others. Despite it has been contrib‑
uted several works reviewing the State‑of‑the‑Art on DL, all of them only tackled one 
aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this 
contribution, we propose using a more holistic approach in order to provide a more 
suitable starting point from which to develop a full understanding of DL. Specifically, 
this review attempts to provide a more comprehensive survey of the most impor‑
tant aspects of DL and including those enhancements recently added to the field. In 
particular, this paper outlines the importance of DL, presents the types of DL tech‑
niques and networks. It then presents convolutional neural networks (CNNs) which the 
most utilized DL network type and describes the development of CNNs architectures 
together with their main features, e.g., starting with the AlexNet network and closing 
with the High‑Resolution network (HR.Net). Finally, we further present the challenges 
and suggested solutions to help researchers understand the existing research gaps. 
It is followed by a list of the major DL applications. Computational tools including 
FPGA, GPU, and CPU are summarized along with a description of their influence on 
DL. The paper ends with the evolution matrix, benchmark datasets, and summary and 
conclusion.
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Introduction
Recently, machine learning (ML) has become very widespread in research and has been 
incorporated in a variety of applications, including text mining, spam detection, video 
recommendation, image classification, and multimedia concept retrieval [1–6]. Among 
the different ML algorithms, deep learning (DL) is very commonly employed in these 
applications [7–9]. Another name for DL is representation learning (RL). The continuing 
appearance of novel studies in the fields of deep and distributed learning is due to both 
the unpredictable growth in the ability to obtain data and the amazing progress made in 
the hardware technologies, e.g. High Performance Computing (HPC) [10].

DL is derived from the conventional neural network but considerably outperforms its 
predecessors. Moreover, DL employs transformations and graph technologies simulta-
neously in order to build up multi-layer learning models. The most recently developed 
DL techniques have obtained good outstanding performance across a variety of applica-
tions, including audio and speech processing, visual data processing, natural language 
processing (NLP), among others [11–14].

Usually, the effectiveness of an ML algorithm is highly dependent on the integrity of 
the input-data representation. It has been shown that a suitable data representation pro-
vides an improved performance when compared to a poor data representation. Thus, 
a significant research trend in ML for many years has been feature engineering, which 
has informed numerous research studies. This approach aims at constructing features 
from raw data. In addition, it is extremely field-specific and frequently requires sizable 
human effort. For instance, several types of features were introduced and compared in 
the computer vision context, such as, histogram of oriented gradients (HOG) [15], scale-
invariant feature transform (SIFT) [16], and bag of words (BoW) [17]. As soon as a novel 
feature is introduced and is found to perform well, it becomes a new research direction 
that is pursued over multiple decades.

Relatively speaking, feature extraction is achieved in an automatic way throughout the 
DL algorithms. This encourages researchers to extract discriminative features using the 
smallest possible amount of human effort and field knowledge [18]. These algorithms 
have a multi-layer data representation architecture, in which the first layers extract the 
low-level features while the last layers extract the high-level features. Note that artificial 
intelligence (AI) originally inspired this type of architecture, which simulates the process 
that occurs in core sensorial regions within the human brain. Using different scenes, the 
human brain can automatically extract data representation. More specifically, the output 
of this process is the classified objects, while the received scene information represents 
the input. This process simulates the working methodology of the human brain. Thus, it 
emphasizes the main benefit of DL.

In the field of ML, DL, due to its considerable success, is currently one of the most 
prominent research trends. In this paper, an overview of DL is presented that adopts 
various perspectives such as the main concepts, architectures, challenges, applications, 
computational tools and evolution matrix. Convolutional neural network (CNN) is one 
of the most popular and used of DL networks [19, 20]. Because of CNN, DL is very pop-
ular nowadays. The main advantage of CNN compared to its predecessors is that it auto-
matically detects the significant features without any human supervision which made 
it the most used. Therefore, we have dug in deep with CNN by presenting the main 
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components of it. Furthermore, we have elaborated in detail the most common CNN 
architectures, starting with the AlexNet network and ending with the High-Resolution 
network (HR.Net).

Several published DL review papers have been presented in the last few years. How-
ever, all of them have only been addressed one side focusing on one application or topic 
such as the review of CNN architectures [21], DL for classification of plant diseases [22], 
DL for object detection [23], DL applications in medical image analysis [24], and etc. 
Although these reviews present good topics, they do not provide a full understanding of 
DL topics such as concepts, detailed research gaps, computational tools, and DL applica-
tions. First, It is required to understand DL aspects including concepts, challenges, and 
applications then going deep in the applications. To achieve that, it requires extensive 
time and a large number of research papers to learn about DL including research gaps 
and applications. Therefore, we propose a deep review of DL to provide a more suit-
able starting point from which to develop a full understanding of DL from one review 
paper. The motivation behinds our review was to cover the most important aspect of DL 
including open challenges, applications, and computational tools perspective. Further-
more, our review can be the first step towards other DL topics.

The main aim of this review is to present the most important aspects of DL to make it 
easy for researchers and students to have a clear image of DL from single review paper. 
This review will further advance DL research by helping people discover more about 
recent developments in the field. Researchers would be allowed to decide the more suit-
able direction of work to be taken in order to provide more accurate alternatives to the 
field. Our contributions are outlined as follows:

• This is the first review that almost provides a deep survey of the most important 
aspects of deep learning. This review helps researchers and students to have a good 
understanding from one paper.

• We explain CNN in deep which the most popular deep learning algorithm by 
describing the concepts, theory, and state-of-the-art architectures.

• We review current challenges (limitations) of Deep Learning including lack of train-
ing data, Imbalanced Data, Interpretability of data, Uncertainty scaling, Catastrophic 
forgetting, Model compression, Overfitting, Vanishing gradient problem, Exploding 
Gradient Problem, and Underspecification. We additionally discuss the proposed 
solutions tackling these issues.

• We provide an exhaustive list of medical imaging applications with deep learning by 
categorizing them based on the tasks by starting with classification and ending with 
registration.

• We discuss the computational approaches (CPU, GPU, FPGA) by comparing the 
influence of each tool on deep learning algorithms.

The rest of the paper is organized as follows: “Survey methodology” section describes 
The survey methodology. “Background” section presents the background. “Classification 
of DL approaches” section defines the classification of DL approaches. “Types of DL net-
works” section displays types of DL networks. “CNN architectures” section shows CNN 
Architectures. “Challenges (limitations) of deep learning and alternate solutions” section 
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details the challenges of DL and alternate solutions. “Applications of deep learning” sec-
tion outlines the applications of DL. “Computational approaches” section explains the 
influence of computational approaches (CPU, GPU, FPGA) on DL. “Evaluation met-
rics” section presents the evaluation metrics. “Frameworks and datasets” section lists 
frameworks and datasets. “Summary and conclusion” section presents the summary and 
conclusion.

Survey methodology
We have reviewed the significant research papers in the field published during 2010–
2020, mainly from the years of 2020 and 2019 with some papers from 2021. The main 
focus was papers from the most reputed publishers such as IEEE, Elsevier, MDPI, 
Nature, ACM, and Springer. Some papers have been selected from ArXiv. We have 
reviewed more than 300 papers on various DL topics. There are 108 papers from the 
year 2020, 76 papers from the year 2019, and 48 papers from the year 2018. This indi-
cates that this review focused on the latest publications in the field of DL. The selected 
papers were analyzed and reviewed to (1) list and define the DL approaches and network 
types, (2) list and explain CNN architectures, (3) present the challenges of DL and sug-
gest the alternate solutions, (4) assess the applications of DL, (5) assess computational 
approaches. The most keywords used for search criteria for this review paper are (“Deep 
Learning”), (“Machine Learning”), (“Convolution Neural Network”), (“Deep Learning” 
AND “Architectures”), ((“Deep Learning”) AND (“Image”) AND (“detection” OR “classi-
fication” OR “segmentation” OR “Localization”)), (“Deep Learning” AND “detection” OR 
“classification” OR “segmentation” OR “Localization”), (“Deep Learning” AND “CPU” 
OR “GPU” OR “FPGA”), (“Deep Learning” AND “Transfer Learning”), (“Deep Learn-
ing” AND “Imbalanced Data”), (“Deep Learning” AND “Interpretability of data”), (“Deep 
Learning” AND “Overfitting”), (“Deep Learning” AND “Underspecification”). Figure  1 
shows our search structure of the survey paper. Table 1 presents the details of some of 
the journals that have been cited in this review paper.

Background
This section will present a background of DL. We begin with a quick introduction to 
DL, followed by the difference between DL and ML. We then show the situations that 
require DL. Finally, we present the reasons for applying DL.

DL, a subset of ML (Fig. 2), is inspired by the information processing patterns found 
in the human brain. DL does not require any human-designed rules to operate; rather, 
it uses a large amount of data to map the given input to specific labels. DL is designed 
using numerous layers of algorithms (artificial neural networks, or ANNs), each of which 
provides a different interpretation of the data that has been fed to them [18, 25].

Achieving the classification task using conventional ML techniques requires several 
sequential steps, specifically pre-processing, feature extraction, wise feature selection, 
learning, and classification. Furthermore, feature selection has a great impact on the 
performance of ML techniques. Biased feature selection may lead to incorrect discrimi-
nation between classes. Conversely, DL has the ability to automate the learning of fea-
ture sets for several tasks, unlike conventional ML methods [18, 26]. DL enables learning 
and classification to be achieved in a single shot (Fig. 3). DL has become an incredibly 
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popular type of ML algorithm in recent years due to the huge growth and evolution of 
the field of big data [27, 28]. It is still in continuous development regarding novel per-
formance for several ML tasks [22, 29–31] and has simplified the improvement of many 
learning fields [32, 33], such as image super-resolution [34], object detection [35, 36], 
and image recognition [30, 37]. Recently, DL performance has come to exceed human 
performance on tasks such as image classification (Fig. 4).

Nearly all scientific fields have felt the impact of this technology. Most industries and 
businesses have already been disrupted and transformed through the use of DL. The 
leading technology and economy-focused companies around the world are in a race to 
improve DL. Even now, human-level performance and capability cannot exceed that the 
performance of DL in many areas, such as predicting the time taken to make car deliv-
eries, decisions to certify loan requests, and predicting movie ratings [38]. The winners 
of the 2019 “Nobel Prize” in computing, also known as the Turing Award, were three 
pioneers in the field of DL (Yann LeCun, Geoffrey Hinton, and Yoshua Bengio) [39]. 
Although a large number of goals have been achieved, there is further progress to be 
made in the DL context. In fact, DL has the ability to enhance human lives by provid-
ing additional accuracy in diagnosis, including estimating natural disasters [40], the dis-
covery of new drugs [41], and cancer diagnosis [42–44]. Esteva et al. [45] found that a 
DL network has the same ability to diagnose the disease as twenty-one board-certified 
dermatologists using 129,450 images of 2032 diseases. Furthermore, in grading prostate 

Fig. 1 Search framework
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cancer, US board-certified general pathologists achieved an average accuracy of 61%, 
while the Google AI [44] outperformed these specialists by achieving an average accu-
racy of 70%. In 2020, DL is playing an increasingly vital role in early diagnosis of the 
novel coronavirus (COVID-19) [29, 46–48]. DL has become the main tool in many hos-
pitals around the world for automatic COVID-19 classification and detection using chest 

Table 1 Some of the journals have been cited in this review paper

Journal IF 2019 CiteScore 2019 Publisher Journal homepage

Pattern Recognition 7.196 13.1 Elsevier https:// www. journ als. elsev ier. com/ 
patte rn‑ recog nition

Pattern Recognition Letter 3.255 6.3 Elsevier https:// www. journ als. elsev ier. com/ 
patte rn‑ recog nition‑ lette rs

Artificial Intelligence Review 5.747 9.1 Springer https:// www. sprin ger. com/ journ al/ 
10462? refer er= www. sprin geron 
line. com

Expert Systems with Applications 5.452 11 Elsevier https:// www. scien cedir ect. com/ journ 
al/ expert‑ syste ms‑ with‑ appli catio ns

Neurocomputing 4.438 9.5 Elsevier https:// www. journ als. elsev ier. com/ 
neuro compu ting

Nature Medicine 36.130 45.9 Nature https:// www. nature. com/ nm/

Nature 42.779 51 Nature https:// www. nature. com/

Journal of Big Data – 6.1 Springer https:// journ alofb igdata. sprin gerop 
en. com/

Multimedia Tools and Applications 2.313 3.7 Springer https:// www. sprin ger. com/ journ al/ 
11042

Computer Methods and Programs 
in Biomedicine

3.632 7.5 Elsevier https:// www. journ als. elsev ier. com/ 
compu ter‑ metho ds‑ and‑ progr ams‑ 
in‑ biome dicine

Machine Learning 2.672 5.0 Springer https:// www. sprin ger. com/ journ al/ 
10994

Machine Vision and Applications 1.605 4.2 Springer https:// www. sprin ger. com/ journ al/ 
138

Medical Image Analysis 11.148 17.2 Elsevier https:// www. scien cedir ect. com/ journ 
al/ medic al‑ image‑ analy sis

IEEE Access 3.745 3.9 IEEE https:// ieeex plore. ieee. org/ xpl/ Recen 
tIssue. jsp? punum ber= 62876 39

IEEE Transactions on Knowledge 
and Data Engineering

4.935 12.0 IEEE https:// ieeex plore. ieee. org/ xpl/ Recen 
tIssue. jsp? punum ber= 69

Nature Communications 12.121 18.1 Nature https:// www. nature. com/ ncomms/

IEEE Transactions on Intelligent 
Transportation Systems

6.319 12.7 IEEE https:// ieeex plore. ieee. org/ xpl/ Recen 
tIssue. jsp? punum ber= 6979

Methods 3.812 8.0 Elsevier https:// www. journ als. elsev ier. com/ 
metho ds

ACM Journal on Emerging Tech‑
nologies in Computing Systems

1.652 4.3 ACM https:// dl. acm. org/ journ al/ jetc

ACM Computing Surveys 6.319 12.7 ACM https:// dl. acm. org/ journ al/ csur

Applied Soft Computing 5.472 10.2 Elsevier https:// www. journ als. elsev ier. com/ 
appli ed‑ soft‑ compu ting

Electronics 2.412 1.9 MDPI https:// www. mdpi. com/ journ al/ elect 
ronics

Applied Sciences 2.474 2.4 MDPI https:// www. mdpi. com/ journ al/ 
appls ci

IEEE Transactions on Industrial 
Informatics

9.112 13.9 IEEE https:// ieeex plore. ieee. org/ xpl/ Recen 
tIssue. jsp? punum ber= 9424

https://www.journals.elsevier.com/pattern-recognition
https://www.journals.elsevier.com/pattern-recognition
https://www.journals.elsevier.com/pattern-recognition-letters
https://www.journals.elsevier.com/pattern-recognition-letters
https://www.springer.com/journal/10462?referer=www.springeronline.com
https://www.springer.com/journal/10462?referer=www.springeronline.com
https://www.springer.com/journal/10462?referer=www.springeronline.com
https://www.sciencedirect.com/journal/expert-systems-with-applications
https://www.sciencedirect.com/journal/expert-systems-with-applications
https://www.journals.elsevier.com/neurocomputing
https://www.journals.elsevier.com/neurocomputing
https://www.nature.com/nm/
https://www.nature.com/
https://journalofbigdata.springeropen.com/
https://journalofbigdata.springeropen.com/
https://www.springer.com/journal/11042
https://www.springer.com/journal/11042
https://www.journals.elsevier.com/computer-methods-and-programs-in-biomedicine
https://www.journals.elsevier.com/computer-methods-and-programs-in-biomedicine
https://www.journals.elsevier.com/computer-methods-and-programs-in-biomedicine
https://www.springer.com/journal/10994
https://www.springer.com/journal/10994
https://www.springer.com/journal/138
https://www.springer.com/journal/138
https://www.sciencedirect.com/journal/medical-image-analysis
https://www.sciencedirect.com/journal/medical-image-analysis
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
https://www.nature.com/ncomms/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
https://www.journals.elsevier.com/methods
https://www.journals.elsevier.com/methods
https://dl.acm.org/journal/jetc
https://dl.acm.org/journal/csur
https://www.journals.elsevier.com/applied-soft-computing
https://www.journals.elsevier.com/applied-soft-computing
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/journal/applsci
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
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Fig. 2 Deep learning family

Fig. 3 The difference between deep learning and traditional machine learning
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X-ray images or other types of images. We end this section by the saying of AI pioneer 
Geoffrey Hinton “Deep learning is going to be able to do everything”.

When to apply deep learning

Machine intelligence is useful in many situations which is equal or better than human 
experts in some cases [49–52], meaning that DL can be a solution to the following 
problems:

• Cases where human experts are not available.
• Cases where humans are unable to explain decisions made using their expertise (lan-

guage understanding, medical decisions, and speech recognition).
• Cases where the problem solution updates over time (price prediction, stock prefer-

ence, weather prediction, and tracking).
• Cases where solutions require adaptation based on specific cases (personalization, 

biometrics).
• Cases where size of the problem is extremely large and exceeds our inadequate rea-

soning abilities (sentiment analysis, matching ads to Facebook, calculation webpage 
ranks).

Why deep learning?

Several performance features may answer this question, e.g 

1. Universal Learning Approach: Because DL has the ability to perform in approxi-
mately all application domains, it is sometimes referred to as universal learning.

2. Robustness: In general, precisely designed features are not required in DL tech-
niques. Instead, the optimized features are learned in an automated fashion related 

Fig. 4 Deep learning performance compared to human
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to the task under consideration. Thus, robustness to the usual changes of the input 
data is attained.

3. Generalization: Different data types or different applications can use the same DL 
technique, an approach frequently referred to as transfer learning (TL) which 
explained in the latter section. Furthermore, it is a useful approach in problems 
where data is insufficient.

4. Scalability: DL is highly scalable. ResNet [37], which was invented by Microsoft, 
comprises 1202 layers and is frequently applied at a supercomputing scale. Law-
rence Livermore National Laboratory (LLNL), a large enterprise working on evolving 
frameworks for networks, adopted a similar approach, where thousands of nodes can 
be implemented [53].

Classification of DL approaches
DL techniques are classified into three major categories: unsupervised, partially super-
vised (semi-supervised) and supervised. Furthermore, deep reinforcement learning 
(DRL), also known as RL, is another type of learning technique, which is mostly con-
sidered to fall into the category of partially supervised (and occasionally unsupervised) 
learning techniques.

Deep supervised learning

This technique deals with labeled data. When considering such a technique, the environs 
have a collection of inputs and resultant outputs (xt , yt) ∼ ρ . For instance, the smart 
agent guesses  if the input is xt and will obtain  as a loss value. Next, 
the network parameters are repeatedly updated by the agent to obtain an improved esti-
mate for the preferred outputs. Following a positive training outcome, the agent acquires 
the ability to obtain the right solutions to the queries from the environs. For DL, there 
are several supervised learning techniques, such as recurrent neural networks (RNNs), 
convolutional neural networks (CNNs), and deep neural networks (DNNs). In addition, 
the RNN category includes gated recurrent units (GRUs) and long short-term memory 
(LSTM) approaches. The main advantage of this technique is the ability to collect data 
or generate a data output from the prior knowledge. However, the disadvantage of this 
technique is that decision boundary might be overstrained when training set doesn’t 
own samples that should be in a class. Overall, this technique is simpler than other tech-
niques in the way of learning with high performance.

Deep semi‑supervised learning

In this technique, the learning process is based on semi-labeled datasets. Occasionally, 
generative adversarial networks (GANs) and DRL are employed in the same way as this 
technique. In addition, RNNs, which include GRUs and LSTMs, are also employed for 
partially supervised learning. One of the advantages of this technique is to minimize 
the amount of labeled data needed. On other the hand, One of the disadvantages of this 
technique is irrelevant input feature present training data could furnish incorrect deci-
sions. Text document classifier is one of the most popular example of an application of 
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semi-supervised learning. Due to difficulty of obtaining a large amount of labeled text 
documents, semi-supervised learning is ideal for text document classification task.

Deep unsupervised learning

This technique makes it possible to implement the learning process in the absence 
of available labeled data (i.e. no labels are required). Here, the agent learns the sig-
nificant features or interior representation required to discover the unidentified 
structure or relationships in the input data. Techniques of generative networks, 
dimensionality reduction and clustering are frequently counted within the category 
of unsupervised learning. Several members of the DL family have performed well on 
non-linear dimensionality reduction and clustering tasks; these include restricted 
Boltzmann machines, auto-encoders and GANs as the most recently developed tech-
niques. Moreover, RNNs, which include GRUs and LSTM approaches, have also 
been employed for unsupervised learning in a wide range of applications. The main 
disadvantages of unsupervised learning are unable to provide accurate information 
concerning data sorting and computationally complex. One of the most popular 
unsupervised learning approaches is clustering [54].

Deep reinforcement learning

Reinforcement Learning operates on interacting with the environment, while super-
vised learning operates on provided sample data. This technique was developed in 
2013 with Google Deep Mind [55]. Subsequently, many enhanced techniques depend-
ent on reinforcement learning were constructed. For example, if the input environ-
ment samples: xt ∼ ρ , agent predict:  and the received cost of the agent is 

, P here is the unknown probability distribution, then the environ-
ment asks a question to the agent. The answer it gives is a noisy score. This method 
is sometimes referred to as semi-supervised learning. Based on this concept, several 
supervised and unsupervised techniques were developed. In comparison with tradi-
tional supervised techniques, performing this learning is much more difficult, as no 
straightforward loss function is available in the reinforcement learning technique. In 
addition, there are two essential differences between supervised learning and rein-
forcement learning: first, there is no complete access to the function, which requires 
optimization, meaning that it should be queried via interaction; second, the state 
being interacted with is founded on an environment, where the input xt is based on 
the preceding actions [9, 56].

For solving a task, the selection of the type of reinforcement learning that needs to 
be performed is based on the space or the scope of the problem. For example, DRL is 
the best way for problems involving many parameters to be optimized. By contrast, 
derivative-free reinforcement learning is a technique that performs well for problems 
with limited parameters. Some of the applications of reinforcement learning are busi-
ness strategy planning and robotics for industrial automation. The main drawback of 
Reinforcement Learning is that parameters may influence the speed of learning. Here 
are the main motivations for utilizing Reinforcement Learning:
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• It assists you to identify which action produces the highest reward over a longer 
period.

• It assists you to discover which situation requires action.
• It also enables it to figure out the best approach for reaching large rewards.
• Reinforcement Learning also gives the learning agent a reward function.

Reinforcement Learning can’t utilize in all the situation such as:

• In case there is sufficient data to resolve the issue with supervised learning tech-
niques.

• Reinforcement Learning is computing-heavy and time-consuming. Specially when 
the workspace is large.

Types of DL networks
The most famous types of deep learning networks are discussed in this section: these 
include recursive neural networks (RvNNs), RNNs, and CNNs. RvNNs and RNNs were 
briefly explained in this section while CNNs were explained in deep due to the impor-
tance of this type. Furthermore, it is the most used in several applications among other 
networks.

Recursive neural networks

RvNN can achieve predictions in a hierarchical structure also classify the outputs uti-
lizing compositional vectors [57]. Recursive auto-associative memory (RAAM) [58] is 
the primary inspiration for the RvNN development. The RvNN architecture is gener-
ated for processing objects, which have randomly shaped structures like graphs or trees. 
This approach generates a fixed-width distributed representation from a variable-size 
recursive-data structure. The network is trained using an introduced back-propagation 
through structure (BTS) learning system [58]. The BTS system tracks the same tech-
nique as the general-back propagation algorithm and has the ability to support a treelike 
structure. Auto-association trains the network to regenerate the input-layer pattern at 
the output layer. RvNN is highly effective in the NLP context. Socher et al.  [59] intro-
duced RvNN architecture designed to process inputs from a variety of modalities. These 
authors demonstrate two applications for classifying natural language sentences: cases 
where each sentence is split into words and nature images, and cases where each image 
is separated into various segments of interest. RvNN computes a likely pair of scores for 
merging and constructs a syntactic tree. Furthermore, RvNN calculates a score related 
to the merge plausibility for every pair of units. Next, the pair with the largest score is 
merged within a composition vector. Following every merge, RvNN generates (a) a larger 
area of numerous units, (b) a compositional vector of the area, and (c) a label for the 
class (for instance, a noun phrase will become the class label for the new area if two units 
are noun words). The compositional vector for the entire area is the root of the RvNN 
tree structure. An example RvNN tree is shown in Fig. 5. RvNN has been employed in 
several applications [60–62].
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Recurrent neural networks

RNNs are a commonly employed and familiar algorithm in the discipline of DL [63–
65]. RNN is mainly applied in the area of speech processing and NLP contexts [66, 
67]. Unlike conventional networks, RNN uses sequential data in the network. Since 
the embedded structure in the sequence of the data delivers valuable information, this 
feature is fundamental to a range of different applications. For instance, it is impor-
tant to understand the context of the sentence in order to determine the meaning of 
a specific word in it. Thus, it is possible to consider the RNN as a unit of short-term 
memory, where x represents the input layer, y is the output layer, and s represents the 
state (hidden) layer. For a given input sequence, a typical unfolded RNN diagram is 
illustrated in Fig. 6. Pascanu et al. [68] introduced three different types of deep RNN 
techniques, namely “Hidden-to-Hidden”, “Hidden-to-Output”, and “Input-to-Hidden”. 
A deep RNN is introduced that lessens the learning difficulty in the deep network and 
brings the benefits of a deeper RNN based on these three techniques.

However, RNN’s sensitivity to the exploding gradient and vanishing problems rep-
resent one of the main issues with this approach [69]. More specifically, during the 
training process, the reduplications of several large or small derivatives may cause the 
gradients to exponentially explode or decay. With the entrance of new inputs, the net-
work stops thinking about the initial ones; therefore, this sensitivity decays over time. 
Furthermore, this issue can be handled using LSTM [70]. This approach offers recur-
rent connections to memory blocks in the network. Every memory block contains a 
number of memory cells, which have the ability to store the temporal states of the 
network. In addition, it contains gated units for controlling the flow of information. 
In very deep networks [37], residual connections also have the ability to considerably 
reduce the impact of the vanishing gradient issue which explained in later sections. 

Fig. 5 An example of RvNN tree
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CNN is considered to be more powerful than RNN. RNN includes less feature com-
patibility when compared to CNN.

Convolutional neural networks

In the field of DL, the CNN is the most famous and commonly employed algorithm [30, 
71–75]. The main benefit of CNN compared to its predecessors is that it automatically 
identifies the relevant features without any human supervision [76]. CNNs have been 
extensively applied in a range of different fields, including computer vision [77], speech 
processing [78], Face Recognition [79], etc. The structure of CNNs was inspired by neu-
rons in human and animal brains, similar to a conventional neural network. More specif-
ically, in a cat’s brain, a complex sequence of cells forms the visual cortex; this sequence 
is simulated by the CNN [80]. Goodfellow et al. [28] identified three key benefits of the 
CNN: equivalent representations, sparse interactions, and parameter sharing. Unlike 
conventional fully connected (FC) networks, shared weights and local connections in 
the CNN are employed to make full use of 2D input-data structures like image signals. 
This operation utilizes an extremely small number of parameters, which both simplifies 
the training process and speeds up the network. This is the same as in the visual cor-
tex cells. Notably, only small regions of a scene are sensed by these cells rather than the 
whole scene (i.e., these cells spatially extract the local correlation available in the input, 
like local filters over the input).

A commonly used type of CNN, which is similar to the multi-layer perceptron (MLP), 
consists of numerous convolution layers preceding sub-sampling (pooling) layers, while 
the ending layers are FC layers. An example of CNN architecture for image classification 
is illustrated in Fig. 7.

The input x of each layer in a CNN model is organized in three dimensions: height, 
width, and depth, or m × m × r , where the height (m) is equal to the width. The depth 
is also referred to as the channel number. For example, in an RGB image, the depth (r) is 
equal to three. Several kernels (filters) available in each convolutional layer are denoted 
by k and also have three dimensions ( n × n × q ), similar to the input image; here, 

Fig. 6 Typical unfolded RNN diagram
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however, n must be smaller than m, while q is either equal to or smaller than r. In addi-
tion, the kernels are the basis of the local connections, which share similar parameters 
(bias bk and weight Wk ) for generating k feature maps hk with a size of ( m − n − 1 ) each 
and are convolved with input, as mentioned above. The convolution layer calculates a 
dot product between its input and the weights as in Eq. 1, similar to NLP, but the inputs 
are undersized areas of the initial image size. Next, by applying the nonlinearity or an 
activation function to the convolution-layer output, we obtain the following:

The next step is down-sampling every feature map in the sub-sampling layers. This leads 
to a reduction in the network parameters, which accelerates the training process and 
in turn enables handling of the overfitting issue. For all feature maps, the pooling func-
tion (e.g. max or average) is applied to an adjacent area of size p × p , where p is the 
kernel size. Finally, the FC layers receive the mid- and low-level features and create the 
high-level abstraction, which represents the last-stage layers as in a typical neural net-
work. The classification scores are generated using the ending layer [e.g. support vector 
machines (SVMs) or softmax]. For a given instance, every score represents the probabil-
ity of a specific class.

Benefits of employing CNNs

The benefits of using CNNs over other traditional neural networks in the computer 
vision environment are listed as follows: 

1. The main reason to consider CNN is the weight sharing feature, which reduces the 
number of trainable network parameters and in turn helps the network to enhance 
generalization and to avoid overfitting.

2. Concurrently learning the feature extraction layers and the classification layer causes 
the model output to be both highly organized and highly reliant on the extracted fea-
tures.

(1)hk = f (Wk ∗ x + bk)

Fig. 7 An example of CNN architecture for image classification
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3. Large-scale network implementation is much easier with CNN than with other neu-
ral networks.

CNN layers

The CNN architecture consists of a number of layers (or so-called multi-building blocks). 
Each layer in the CNN architecture, including its function, is described in detail below. 

1. Convolutional Layer: In CNN architecture, the most significant component is the 
convolutional layer. It consists of a collection of convolutional filters (so-called ker-
nels). The input image, expressed as N-dimensional metrics, is convolved with these 
filters to generate the output feature map.

• Kernel definition: A grid of discrete numbers or values describes the kernel. 
Each value is called the kernel weight. Random numbers are assigned to act as 
the weights of the kernel at the beginning of the CNN training process. In addi-
tion, there are several different methods used to initialize the weights. Next, these 
weights are adjusted at each training era; thus, the kernel learns to extract signifi-
cant features.

• Convolutional Operation: Initially, the CNN input format is described. The 
vector format is the input of the traditional neural network, while the multi-
channeled image is the input of the CNN. For instance, single-channel is the 
format of the gray-scale image, while the RGB image format is three-channeled. 
To understand the convolutional operation, let us take an example of a 4 × 4 
gray-scale image with a 2 × 2 random weight-initialized kernel. First, the ker-
nel slides over the whole image horizontally and vertically. In addition, the dot 
product between the input image and the kernel is determined, where their 
corresponding values are multiplied and then summed up to create a single sca-
lar value, calculated concurrently. The whole process is then repeated until no 
further sliding is possible. Note that the calculated dot product values represent 
the feature map of the output. Figure 8 graphically illustrates the primary cal-
culations executed at each step. In this figure, the light green color represents 
the 2 × 2 kernel, while the light blue color represents the similar size area of the 
input image. Both are multiplied; the end result after summing up the resulting 
product values (marked in a light orange color) represents an entry value to the 
output feature map.

 However, padding to the input image is not applied in the previous example, 
while a stride of one (denoted for the selected step-size over all vertical or hori-
zontal locations) is applied to the kernel. Note that it is also possible to use 
another stride value. In addition, a feature map of lower dimensions is obtained 
as a result of increasing the stride value.

 On the other hand, padding is highly significant to determining border size 
information related to the input image. By contrast, the border side-features 
moves carried away very fast. By applying padding, the size of the input image 
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will increase, and in turn, the size of the output feature map will also increase. 
Core Benefits of Convolutional Layers.

• Sparse Connectivity: Each neuron of a layer in FC neural networks links with 
all neurons in the following layer. By contrast, in CNNs, only a few weights are 
available between two adjacent layers. Thus, the number of required weights or 
connections is small, while the memory required to store these weights is also 

Fig. 8 The primary calculations executed at each step of convolutional layer
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small; hence, this approach is memory-effective. In addition, matrix operation 
is computationally much more costly than the dot (.) operation in CNN.

• Weight Sharing: There are no allocated weights between any two neurons of 
neighboring layers in CNN, as the whole weights operate with one and all 
pixels of the input matrix. Learning a single group of weights for the whole 
input will significantly decrease the required training time and various costs, 
as it is not necessary to learn additional weights for each neuron.

2. Pooling Layer: The main task of the pooling layer is the sub-sampling of the feature 
maps. These maps are generated by following the convolutional operations. In other 
words, this approach shrinks large-size feature maps to create smaller feature maps. 
Concurrently, it maintains the majority of the dominant information (or features) in 
every step of the pooling stage. In a similar manner to the convolutional operation, 
both the stride and the kernel are initially size-assigned before the pooling operation 
is executed. Several types of pooling methods are available for utilization in various 
pooling layers. These methods include tree pooling, gated pooling, average pooling, 
min pooling, max pooling, global average pooling (GAP), and global max pooling. 
The most familiar and frequently utilized pooling methods are the max, min, and 
GAP pooling. Figure 9 illustrates these three pooling operations.

 Sometimes, the overall CNN performance is decreased as a result; this represents 
the main shortfall of the pooling layer, as this layer helps the CNN to determine 
whether or not a certain feature is available in the particular input image, but focuses 
exclusively on ascertaining the correct location of that feature. Thus, the CNN model 
misses the relevant information.

3. Activation Function (non-linearity) Mapping the input to the output is the core func-
tion of all types of activation function in all types of neural network. The input value 
is determined by computing the weighted summation of the neuron input along with 
its bias (if present). This means that the activation function makes the decision as to 
whether or not to fire a neuron with reference to a particular input by creating the 
corresponding output.

Fig. 9 Three types of pooling operations
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 Non-linear activation layers are employed after all layers with weights (so-called 
learnable layers, such as FC layers and convolutional layers) in CNN architecture. 
This non-linear performance of the activation layers means that the mapping of input 
to output will be non-linear; moreover, these layers give the CNN the ability to learn 
extra-complicated things. The activation function must also have the ability to differ-
entiate, which is an extremely significant feature, as it allows error back-propagation 
to be used to train the network. The following types of activation functions are most 
commonly used in CNN and other deep neural networks.

• Sigmoid: The input of this activation function is real numbers, while the output is 
restricted to between zero and one. The sigmoid function curve is S-shaped and 
can be represented mathematically by Eq. 2. 

• Tanh: It is similar to the sigmoid function, as its input is real numbers, but the out-
put is restricted to between − 1 and 1. Its mathematical representation is in Eq. 3. 

• ReLU: The mostly commonly used function in the CNN context. It converts the 
whole values of the input to positive numbers. Lower computational load is the 
main benefit of ReLU over the others. Its mathematical representation is in Eq. 4. 

 Occasionally, a few significant issues may occur during the use of ReLU. For 
instance, consider an error back-propagation algorithm with a larger gradient 
flowing through it. Passing this gradient within the ReLU function will update the 
weights in a way that makes the neuron certainly not activated once more. This 
issue is referred to as “Dying ReLU”. Some ReLU alternatives exist to solve such 
issues. The following discusses some of them.

• Leaky ReLU: Instead of ReLU down-scaling the negative inputs, this activation 
function ensures these inputs are never ignored. It is employed to solve the Dying 
ReLU problem. Leaky ReLU can be represented mathematically as in Eq. 5. 

 Note that the leak factor is denoted by m. It is commonly set to a very small value, 
such as 0.001.

• Noisy ReLU: This function employs a Gaussian distribution to make ReLU noisy. 
It can be represented mathematically as in Eq. 6. 

(2)f (x)sigm =
1

1 + e−x

(3)f (x)tanh =
ex − e−x

ex + e−x

(4)f (x)ReLU = max(0, x)

(5)f (x)LeakyReLU =

{

x, if x > 0
mx, x ≤ 0

}

(6)f (x)NoisyReLU = max(x + Y ),with Y ∼ N (0, σ(x))
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• Parametric Linear Units: This is mostly the same as Leaky ReLU. The main differ-
ence is that the leak factor in this function is updated through the model training 
process. The parametric linear unit can be represented mathematically as in Eq. 7. 

 Note that the learnable weight is denoted as a.
4. Fully Connected Layer: Commonly, this layer is located at the end of each CNN 

architecture. Inside this layer, each neuron is connected to all neurons of the pre-
vious layer, the so-called Fully Connected (FC) approach. It is utilized as the CNN 
classifier. It follows the basic method of the conventional multiple-layer perceptron 
neural network, as it is a type of feed-forward ANN. The input of the FC layer comes 
from the last pooling or convolutional layer. This input is in the form of a vector, 
which is created from the feature maps after flattening. The output of the FC layer 
represents the final CNN output, as illustrated in Fig. 10.

5. Loss Functions: The previous section has presented various layer-types of CNN 
architecture. In addition, the final classification is achieved from the output layer, 
which represents the last layer of the CNN architecture. Some loss functions are uti-
lized in the output layer to calculate the predicted error created across the training 
samples in the CNN model. This error reveals the difference between the actual out-
put and the predicted one. Next, it will be optimized through the CNN learning pro-
cess.

 However, two parameters are used by the loss function to calculate the error. The 
CNN estimated output (referred to as the prediction) is the first parameter. The 
actual output (referred to as the label) is the second parameter. Several types of loss 
function are employed in various problem types. The following concisely explains 
some of the loss function types. 

(7)f (x)ParametricLinear =

{

x, if x > 0
ax, x ≤ 0

}

Fig. 10 Fully connected layer
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(a) Cross-Entropy or Softmax Loss Function: This function is commonly employed 
for measuring the CNN model performance. It is also referred to as the log 
loss function. Its output is the probability p ∈ {0 , 1} . In addition, it is usually 
employed as a substitution of the square error loss function in multi-class clas-
sification problems. In the output layer, it employs the softmax activations to 
generate the output within a probability distribution. The mathematical repre-
sentation of the output class probability is Eq. 8. 

 Here, eai represents the non-normalized output from the preceding layer, while 
N represents the number of neurons in the output layer. Finally, the mathemat-
ical representation of cross-entropy loss function is Eq. 9. 

(b) Euclidean Loss Function: This function is widely used in regression problems. 
In addition, it is also the so-called mean square error. The mathematical expres-
sion of the estimated Euclidean loss is Eq. 10. 

(c) Hinge Loss Function: This function is commonly employed in problems related 
to binary classification. This problem relates to maximum-margin-based clas-
sification; this is mostly important for SVMs, which use the hinge loss function, 
wherein the optimizer attempts to maximize the margin around dual objective 
classes. Its mathematical formula is Eq. 11. 

 The margin m is commonly set to 1. Moreover, the predicted output is denoted 
as pi , while the desired output is denoted as yi.

Regularization to CNN

For CNN models, over-fitting represents the central issue associated with obtaining 
well-behaved generalization. The model is entitled over-fitted in cases where the model 
executes especially well on training data and does not succeed on test data (unseen data) 
which is more explained in the latter section. An under-fitted model is the opposite; this 
case occurs when the model does not learn a sufficient amount from the training data. 
The model is referred to as “just-fitted” if it executes well on both training and testing 
data. These three types are illustrated in Fig. 11. Various intuitive concepts are used to 
help the regularization to avoid over-fitting; more details about over-fitting and under-
fitting are discussed in latter sections. 

(8)pi =
eai

∑N
k=1 e

a
k

(9)H(p, y) = −
∑

i

yi log(pi) where i ∈ [1,N ]

(10)H(p, y) =
1

2N

N
∑

i=1

(pi − yi)
2

(11)H(p, y) =

N
∑

i=1

max(0,m − (2yi − 1)pi)
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1. Dropout: This is a widely utilized technique for generalization. During each training 
epoch, neurons are randomly dropped. In doing this, the feature selection power is 
distributed equally across the whole group of neurons, as well as forcing the model to 
learn different independent features. During the training process, the dropped neu-
ron will not be a part of back-propagation or forward-propagation. By contrast, the 
full-scale network is utilized to perform prediction during the testing process.

2. Drop-Weights: This method is highly similar to dropout. In each training epoch, the 
connections between neurons (weights) are dropped rather than dropping the neu-
rons; this represents the only difference between drop-weights and dropout.

3. Data Augmentation: Training the model on a sizeable amount of data is the easiest 
way to avoid over-fitting. To achieve this, data augmentation is used. Several tech-
niques are utilized to artificially expand the size of the training dataset. More details 
can be found in the latter section, which describes the data augmentation techniques.

4. Batch Normalization: This method ensures the performance of the output activations 
[81]. This performance follows a unit Gaussian distribution. Subtracting the mean 
and dividing by the standard deviation will normalize the output at each layer. While 
it is possible to consider this as a pre-processing task at each layer in the network, it 
is also possible to differentiate and to integrate it with other networks. In addition, it 
is employed to reduce the “internal covariance shift” of the activation layers. In each 
layer, the variation in the activation distribution defines the internal covariance shift. 
This shift becomes very high due to the continuous weight updating through train-
ing, which may occur if the samples of the training data are gathered from numer-
ous dissimilar sources (for example, day and night images). Thus, the model will con-
sume extra time for convergence, and in turn, the time required for training will also 
increase. To resolve this issue, a layer representing the operation of batch normaliza-
tion is applied in the CNN architecture.

 The advantages of utilizing batch normalization are as follows:

• It prevents the problem of vanishing gradient from arising.
• It can effectively control the poor weight initialization.
• It significantly reduces the time required for network convergence (for large-scale 

datasets, this will be extremely useful).
• It struggles to decrease training dependency across hyper-parameters.

Fig. 11 Over‑fitting and under‑fitting issues
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• Chances of over-fitting are reduced, since it has a minor influence on regulariza-
tion.

Optimizer selection

This section discusses the CNN learning process. Two major issues are included in the 
learning process: the first issue is the learning algorithm selection (optimizer), while the 
second issue is the use of many enhancements (such as AdaDelta, Adagrad, and momen-
tum) along with the learning algorithm to enhance the output.

Loss functions, which are founded on numerous learnable parameters (e.g. biases, 
weights, etc.) or minimizing the error (variation between actual and predicted output), 
are the core purpose of all supervised learning algorithms. The techniques of gradient-
based learning for a CNN network appear as the usual selection. The network parame-
ters should always update though all training epochs, while the network should also look 
for the locally optimized answer in all training epochs in order to minimize the error.

The learning rate is defined as the step size of the parameter updating. The train-
ing epoch represents a complete repetition of the parameter update that involves the 
complete training dataset at one time. Note that it needs to select the learning rate 
wisely so that it does not influence the learning process imperfectly, although it is a 
hyper-parameter.

Gradient Descent or Gradient-based learning algorithm: To minimize the train-
ing error, this algorithm repetitively updates the network parameters through every 
training epoch. More specifically, to update the parameters correctly, it needs to com-
pute the objective function gradient (slope) by applying a first-order derivative with 
respect to the network parameters. Next, the parameter is updated in the reverse 
direction of the gradient to reduce the error. The parameter updating process is per-
formed though network back-propagation, in which the gradient at every neuron is 
back-propagated to all neurons in the preceding layer. The mathematical representa-
tion of this operation is as Eq. 12.

The final weight in the current training epoch is denoted by wijt , while the weight in the 
preceding (t − 1) training epoch is denoted wijt−1 . The learning rate is η and the predic-
tion error is E. Different alternatives of the gradient-based learning algorithm are avail-
able and commonly employed; these include the following: 

1. Batch Gradient Descent: During the execution of this technique [82], the network 
parameters are updated merely one time behind considering all training datasets via 
the network. In more depth, it calculates the gradient of the whole training set and 
subsequently uses this gradient to update the parameters. For a small-sized dataset, 
the CNN model converges faster and creates an extra-stable gradient using BGD. 
Since the parameters are changed only once for every training epoch, it requires a 
substantial amount of resources. By contrast, for a large training dataset, additional 

(12)wijt = wijt−1 − �wijt , �wijt = η ∗
∂E

∂wij
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time is required for converging, and it could converge to a local optimum (for non-
convex instances).

2. Stochastic Gradient Descent: The parameters are updated at each training sample in 
this technique [83]. It is preferred to arbitrarily sample the training samples in every 
epoch in advance of training. For a large-sized training dataset, this technique is both 
more memory-effective and much faster than BGD. However, because it is frequently 
updated, it takes extremely noisy steps in the direction of the answer, which in turn 
causes the convergence behavior to become highly unstable.

3. Mini-batch Gradient Descent: In this approach, the training samples are partitioned 
into several mini-batches, in which every mini-batch can be considered an under-
sized collection of samples with no overlap between them [84]. Next, parameter 
updating is performed following gradient computation on every mini-batch. The 
advantage of this method comes from combining the advantages of both BGD and 
SGD techniques. Thus, it has a steady convergence, more computational efficiency 
and extra memory effectiveness. The following describes several enhancement tech-
niques in gradient-based learning algorithms (usually in SGD), which further power-
fully enhance the CNN training process.

4. Momentum: For neural networks, this technique is employed in the objective func-
tion. It enhances both the accuracy and the training speed by summing the com-
puted gradient at the preceding training step, which is weighted via a factor � (known 
as the momentum factor). However, it therefore simply becomes stuck in a local 
minimum rather than a global minimum. This represents the main disadvantage of 
gradient-based learning algorithms. Issues of this kind frequently occur if the issue 
has no convex surface (or solution space).

 Together with the learning algorithm, momentum is used to solve this issue, which 
can be expressed mathematically as in Eq. 13. 

 The weight increment in the current t ′th training epoch is denoted as �wijt , while 
η is the learning rate, and the weight increment in the preceding (t − 1)′th training 
epoch. The momentum factor value is maintained within the range 0 to 1; in turn, 
the step size of the weight updating increases in the direction of the bare minimum 
to minimize the error. As the value of the momentum factor becomes very low, the 
model loses its ability to avoid the local bare minimum. By contrast, as the momen-
tum factor value becomes high, the model develops the ability to converge much 
more rapidly. If a high value of momentum factor is used together with LR, then the 
model could miss the global bare minimum by crossing over it.

 However, when the gradient varies its direction continually throughout the training 
process, then the suitable value of the momentum factor (which is a hyper-parame-
ter) causes a smoothening of the weight updating variations.

5. Adaptive Moment Estimation (Adam): It is another optimization technique or learn-
ing algorithm that is widely used. Adam [85] represents the latest trends in deep 

(13)�wijt =

(

η ∗
∂E

∂wij

)

+ (� ∗ �wijt−1)
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learning optimization. This is represented by the Hessian matrix, which employs a 
second-order derivative. Adam is a learning strategy that has been designed specifi-
cally for training deep neural networks. More memory efficient and less computa-
tional power are two advantages of Adam. The mechanism of Adam is to calculate 
adaptive LR for each parameter in the model. It integrates the pros of both Momen-
tum and RMSprop. It utilizes the squared gradients to scale the learning rate as 
RMSprop and it is similar to the momentum by using the moving average of the gra-
dient. The equation of Adam is represented in Eq. 14. 

Design of algorithms (backpropagation)

Let’s start with a notation that refers to weights in the network unambiguously. We 
denote wh

ij to be the weight for the connection from ith input or (neuron at (h − 1)th) 
to the jt neuron in the hth layer. So, Fig. 12 shows the weight on a connection from the 
neuron in the first layer to another neuron in the next layer in the network.

Where w2
11 has represented the weight from the first neuron in the first layer to the 

first neuron in the second layer, based on that the second weight for the same neuron 
will be w2

21 which means is the weight comes from the second neuron in the previous 
layer to the first layer in the next layer which is the second in this net. Regarding the 
bias, since the bias is not the connection between the neurons for the layers, so it is 
easily handled each neuron must have its own bias, some network each layer has a 
certain bias. It can be seen from the above net that each layer has its own bias. Each 
network has the parameters such as the no of the layer in the net, the number of the 
neurons in each layer, no of the weight (connection) between the layers, the no of 
connection can be easily determined based on the no of neurons in each layer, for 
example, if there are ten input fully connect with two neurons in the next layer then 

(14)wijt = wijt−1 −
η

√

Ê[δ2]t+ ∈

∗ Ê[δ2]t

Fig. 12 MLP structure
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the number of connection between them is (10 ∗ 2 = 20 connection, weights), how 
the error is defined, and the weight is updated, we will imagine there is there are two 
layers in our neural network,

where d is the label of induvial input ith and y is the output of the same individual input. 
Backpropagation is about understanding how to change the weights and biases in a net-
work based on the changes of the cost function (Error). Ultimately, this means comput-
ing the partial derivatives ∂E/∂wh

ij and ∂E/∂bhj . But to compute those, a local variable is 
introduced, δ1j  which is called the local error in the jth neuron in the hth layer. Based on 
that local error Backpropagation will give the procedure to compute ∂E/∂wh

ij and ∂E/∂bhj  
how the error is defined, and the weight is updated, we will imagine there is there are 
two layers in our neural network that is shown in Fig. 13.

Output error for δ1j  each 1 = 1 : L where L is no. of neuron in output

where e(k) is the error of the epoch k as shown in Eq. (2) and ϑ ′
(

vj(k)
)

 is the derivate of 
the activation function for vj at the output.

Backpropagate the error at all the rest layer except the output

where δ1j (k) is the output error and wh+1
jl (k) is represented the weight after the layer 

where the error need to obtain.
After finding the error at each neuron in each layer, now we can update the weight 

in each layer based on Eqs. (16) and (17).

Improving performance of CNN

Based on our experiments in different DL applications [86–88]. We can conclude the 
most active solutions that may improve the performance of CNN are:

(15)error = 1/2
(

di − yi
)2

(16)δ1j (k) = (−1)e(k)ϑ ′
(

vj(k)
)

(17)δhj (k) = ϑ
′
(

vj(k)
)

L
∑

l=1

δ1j w
h+1
jl (k)

Fig. 13 Neuron activation functions
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• Expand the dataset with data augmentation or use transfer learning (explained in lat-
ter sections).

• Increase the training time.
• Increase the depth (or width) of the model.
• Add regularization.
• Increase hyperparameters tuning.

CNN architectures
Over the last 10 years, several CNN architectures have been presented [21, 26]. Model 
architecture is a critical factor in improving the performance of different applications. 
Various modifications have been achieved in CNN architecture from 1989 until today. 
Such modifications include structural reformulation, regularization, parameter optimi-
zations, etc. Conversely, it should be noted that the key upgrade in CNN performance 
occurred largely due to the processing-unit reorganization, as well as the development 
of novel blocks. In particular, the most novel developments in CNN architectures were 
performed on the use of network depth. In this section, we review the most popular 
CNN architectures, beginning from the AlexNet model in 2012 and ending at the High-
Resolution (HR) model in 2020. Studying these architectures features (such as input size, 
depth, and robustness) is the key to help researchers to choose the suitable architecture 
for the their target task. Table 2 presents the brief overview of CNN architectures.

AlexNet

The history of deep CNNs began with the appearance of LeNet [89] (Fig.  14). At that 
time, the CNNs were restricted to handwritten digit recognition tasks, which cannot 
be scaled to all image classes. In deep CNN architecture, AlexNet is highly respected 
[30], as it achieved innovative results in the fields of image recognition and classification. 
Krizhevesky et  al. [30] first proposed AlexNet and consequently improved the CNN 
learning ability by increasing its depth and implementing several parameter optimiza-
tion strategies. Figure 15 illustrates the basic design of the AlexNet architecture.

The learning ability of the deep CNN was limited at this time due to hardware 
restrictions. To overcome these hardware limitations, two GPUs (NVIDIA GTX 580) 
were used in parallel to train AlexNet. Moreover, in order to enhance the applicabil-
ity of the CNN to different image categories, the number of feature extraction stages 
was increased from five in LeNet to seven in AlexNet. Regardless of the fact that depth 
enhances generalization for several image resolutions, it was in fact overfitting that rep-
resented the main drawback related to the depth. Krizhevesky et al. used Hinton’s idea to 
address this problem [90, 91]. To ensure that the features learned by the algorithm were 
extra robust, Krizhevesky et  al.’s algorithm randomly passes over several transforma-
tional units throughout the training stage. Moreover, by reducing the vanishing gradient 
problem, ReLU [92] could be utilized as a non-saturating activation function to enhance 
the rate of convergence [93]. Local response normalization and overlapping subsampling 
were also performed to enhance the generalization by decreasing the overfitting. To 
improve on the performance of previous networks, other modifications were made by 
using large-size filters (5 × 5 and 11 × 11) in the earlier layers. AlexNet has considerable 
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Table 2 Brief overview of CNN architectures

Model Main finding Depth Dataset Error rate Input size Year

AlexNet Utilizes Dropout 
and ReLU

8 ImageNet 16.4 227 × 227 × 3 2012

NIN New layer, called 
‘mlpconv’, utilizes 
GAP

3 CIFAR‑10, CIFAR‑
100, MNIST

10.41, 35.68, 0.45 32 × 32 × 3 2013

ZfNet Visualization idea 
of middle layers

8 ImageNet 11.7 224 × 224 × 3 2014

VGG Increased depth, 
small filter size

16, 19 ImageNet 7.3 224 × 224 × 3 2014

GoogLeNet Increased 
depth,block 
concept, differ‑
ent filter size, 
concatenation 
concept

22 ImageNet 6.7 224 × 224 × 3 2015

Inception‑V3 Utilizes small 
filtersize, better 
feature represen‑
tation

48 ImageNet 3.5 229 × 229 × 3 2015

Highway Presented the mul‑
tipath concept

19, 32 CIFAR‑10 7.76 32 × 32 × 3 2015

Inception‑V4 Divided transform 
and integration 
concepts

70 ImageNet 3.08 229 × 229 × 3 2016

ResNet Robust against 
overfitting due 
to symmetry 
mapping‑based 
skip links

152 ImageNet 3.57 224 × 224 × 3 2016

Inception‑ResNet‑
v2

Introduced the 
concept of 
residual links

164 ImageNet 3.52 229 × 229 × 3 2016

FractalNet Introduced the 
concept of 
Drop‑Path as 
regularization

40,80 CIFAR‑10 4.60 32 × 32 × 3 2016

CIFAR‑100 18.85

WideResNet Decreased the 
depth and 
increased the 
width

28 CIFAR‑10 3.89 32 × 32 × 3 2016

CIFAR‑100 18.85

Xception A depthwise con‑
volutionfollowed 
by a pointwise 
convolution

71 ImageNet 0.055 229 × 229 × 3 2017

Residual attention 
neural network

Presented the 
attention tech‑
nique

452 CIFAR‑10, CIFAR‑
100

3.90, 20.4 40 × 40 × 3 2017

Squeeze‑and‑exci‑
tation networks

Modeled inter‑
dependencies 
between chan‑
nels

152 ImageNet 2.25 229 × 229 × 3 2017

224 × 224 × 3

320 × 320 × 3

DenseNet Blocks of layers; 
layers connected 
to each other

201 CIFAR‑10, CIFAR‑
100,ImageNet

3.46, 17.18, 5.54 224 × 224 × 3 2017

Competitive 
squeeze and 
excitation net‑
work

Both residual and 
identity map‑
pings utilized 
to rescale the 
channel

152 CIFAR‑10 3.58 32 × 32 × 3 2018

CIFAR‑100 18.47
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significance in the recent CNN generations, as well as beginning an innovative research 
era in CNN applications.

Network‑in‑network

This network model, which has some slight differences from the preceding models, 
introduced two innovative concepts [94]. The first was employing multiple layers of 

Table 2 (continued)

Model Main finding Depth Dataset Error rate Input size Year

MobileNet‑v2 Inverted residual 
structure

53 ImageNet – 224 × 224 × 3 2018

CapsuleNet Pays attention to 
special relation‑
ships between 
features

3 MNIST 0.00855 28 × 28 × 1 2018

HRNetV2 High‑resolution 
representations

– ImageNet 5.4 224 × 224 × 3 2020

Fig. 14 The architecture of LeNet

Fig. 15 The architecture of AlexNet
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perception convolution. These convolutions are executed using a 1×1 filter, which sup-
ports the addition of extra nonlinearity in the networks. Moreover, this supports enlarg-
ing the network depth, which may later be regularized using dropout. For DL models, 
this idea is frequently employed in the bottleneck layer. As a substitution for a FC layer, 
the GAP is also employed, which represents the second novel concept and enables a sig-
nificant reduction in the number of model parameters. In addition, GAP considerably 
updates the network architecture. Generating a final low-dimensional feature vector 
with no reduction in the feature maps dimension is possible when GAP is used on a 
large feature map [95, 96]. Figure 16 shows the structure of the network.

ZefNet

Before 2013, the CNN learning mechanism was basically constructed on a trial-and-
error basis, which precluded an understanding of the precise purpose following the 
enhancement. This issue restricted the deep CNN performance on convoluted images. In 
response, Zeiler and Fergus introduced DeconvNet (a multilayer de-convolutional neu-
ral network) in 2013 [97]. This method later became known as ZefNet, which was devel-
oped in order to quantitively visualize the network. Monitoring the CNN performance 
via understanding the neuron activation was the purpose of the network activity visuali-
zation. However, Erhan et al. utilized this exact concept to optimize deep belief network 
(DBN) performance by visualizing the features of the hidden layers [98]. Moreover, in 
addition to this issue, Le et al. assessed the deep unsupervised auto-encoder (AE) per-
formance by visualizing the created classes of the image using the output neurons [99]. 
By reversing the operation order of the convolutional and pooling layers, DenconvNet 
operates like a forward-pass CNN. Reverse mapping of this kind launches the convolu-
tional layer output backward to create visually observable image shapes that accordingly 
give the neural interpretation of the internal feature representation learned at each layer 
[100]. Monitoring the learning schematic through the training stage was the key con-
cept underlying ZefNet. In addition, it utilized the outcomes to recognize an ability issue 
coupled with the model. This concept was experimentally proven on AlexNet by apply-
ing DeconvNet. This indicated that only certain neurons were working, while the others 
were out of action in the first two layers of the network. Furthermore, it indicated that 
the features extracted via the second layer contained aliasing objects. Thus, Zeiler and 
Fergus changed the CNN topology due to the existence of these outcomes. In addition, 
they executed parameter optimization, and also exploited the CNN learning by decreas-
ing the stride and the filter sizes in order to retain all features of the initial two convo-
lutional layers. An improvement in performance was accordingly achieved due to this 

Fig. 16 The architecture of network‑in‑network
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rearrangement in CNN topology. This rearrangement proposed that the visualization of 
the features could be employed to identify design weaknesses and conduct appropriate 
parameter alteration. Figure 17 shows the structure of the network.

Visual geometry group (VGG)

After CNN was determined to be effective in the field of image recognition, an easy and 
efficient design principle for CNN was proposed by Simonyan and Zisserman. This inno-
vative design was called Visual Geometry Group (VGG). A multilayer model [101], it fea-
tured nineteen more layers than ZefNet [97] and AlexNet [30] to simulate the relations 
of the network representational capacity in depth. Conversely, in the 2013-ILSVRC com-
petition, ZefNet was the frontier network, which proposed that filters with small sizes 
could enhance the CNN performance. With reference to these results, VGG inserted a 
layer of the heap of 3 × 3 filters rather than the 5 × 5 and 11 × 11 filters in ZefNet. This 
showed experimentally that the parallel assignment of these small-size filters could pro-
duce the same influence as the large-size filters. In other words, these small-size filters 
made the receptive field similarly efficient to the large-size filters (7 × 7 and 5 × 5) . By 
decreasing the number of parameters, an extra advantage of reducing computational 
complication was achieved by using small-size filters. These outcomes established a 
novel research trend for working with small-size filters in CNN. In addition, by inserting 
1 × 1 convolutions in the middle of the convolutional layers, VGG regulates the network 
complexity. It learns a linear grouping of the subsequent feature maps. With respect 
to network tuning, a max pooling layer [102] is inserted following the convolutional 
layer, while padding is implemented to maintain the spatial resolution. In general, VGG 
obtained significant results for localization problems and image classification. While it 
did not achieve first place in the 2014-ILSVRC competition, it acquired a reputation due 
to its enlarged depth, homogenous topology, and simplicity. However, VGG’s computa-
tional cost was excessive due to its utilization of around 140 million parameters, which 
represented its main shortcoming. Figure 18 shows the structure of the network.

GoogLeNet

In the 2014-ILSVRC competition, GoogleNet (also called Inception-V1) emerged as the 
winner [103]. Achieving high-level accuracy with decreased computational cost is the 
core aim of the GoogleNet architecture. It proposed a novel inception block (module) 
concept in the CNN context, since it combines multiple-scale convolutional transfor-
mations by employing merge, transform, and split functions for feature extraction. Fig-
ure 19 illustrates the inception block architecture. This architecture incorporates filters 

Fig. 17 The architecture of ZefNet
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of different sizes ( 5 × 5, 3 × 3, and 1 × 1 ) to capture channel information together with 
spatial information at diverse ranges of spatial resolution. The common convolutional 
layer of GoogLeNet is substituted by small blocks using the same concept of network-
in-network (NIN) architecture [94], which replaced each layer with a micro-neural net-
work. The GoogLeNet concepts of merge, transform, and split were utilized, supported 
by attending to an issue correlated with different learning types of variants existing in a 
similar class of several images. The motivation of GoogLeNet was to improve the effi-
ciency of CNN parameters, as well as to enhance the learning capacity. In addition, it 
regulates the computation by inserting a 1 × 1 convolutional filter, as a bottleneck layer, 
ahead of using large-size kernels. GoogleNet employed sparse connections to overcome 
the redundant information problem. It decreased cost by neglecting the irrelevant chan-
nels. It should be noted here that only some of the input channels are connected to some 
of the output channels. By employing a GAP layer as the end layer, rather than utilizing a 
FC layer, the density of connections was decreased. The number of parameters was also 
significantly decreased from 40 to 5 million parameters due to these parameter tunings. 
The additional regularity factors used included the employment of RmsProp as opti-
mizer and batch normalization [104]. Furthermore, GoogleNet proposed the idea of aux-
iliary learners to speed up the rate of convergence. Conversely, the main shortcoming of 
GoogleNet was its heterogeneous topology; this shortcoming requires adaptation from 
one module to another. Other shortcomings of GoogleNet include the representation 

Fig. 18 The architecture of VGG

Fig. 19 The basic structure of Google Block
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jam, which substantially decreased the feature space in the following layer, and in turn 
occasionally leads to valuable information loss.

Highway network

Increasing the network depth enhances its performance, mainly for complicated tasks. 
By contrast, the network training becomes difficult. The presence of several layers in 
deeper networks may result in small gradient values of the back-propagation of error at 
lower layers. In 2015, Srivastava et al. [105] suggested a novel CNN architecture, called 
Highway Network, to overcome this issue. This approach is based on the cross-connec-
tivity concept. The unhindered information flow in Highway Network is empowered by 
instructing two gating units inside the layer. The gate mechanism concept was motivated 
by LSTM-based RNN [106, 107]. The information aggregation was conducted by merg-
ing the information of the ıth − k layers with the next ıth layer to generate a regulariza-
tion impact, which makes the gradient-based training of the deeper network very simple. 
This empowers the training of networks with more than 100 layers, such as a deeper 
network of 900 layers with the SGD algorithm. A Highway Network with a depth of fifty 
layers presented an improved rate of convergence, which is better than thin and deep 
architectures at the same time [108]. By contrast, [69] empirically demonstrated that 
plain Net performance declines when more than ten hidden layers are inserted. It should 
be noted that even a Highway Network 900 layers in depth converges much more rapidly 
than the plain network.

ResNet

He et  al. [37] developed ResNet (Residual Network), which was the winner of ILS-
VRC 2015. Their objective was to design an ultra-deep network free of the vanishing 
gradient issue, as compared to the previous networks. Several types of ResNet were 
developed based on the number of layers (starting with 34 layers and going up to 1202 
layers). The most common type was ResNet50, which comprised 49 convolutional lay-
ers plus a single FC layer. The overall number of network weights was 25.5 M, while 
the overall number of MACs was 3.9  M. The novel idea of ResNet is its use of the 
bypass pathway concept, as shown in Fig. 20, which was employed in Highway Nets to 
address the problem of training a deeper network in 2015. This is illustrated in Fig. 20, 
which contains the fundamental ResNet block diagram. This is a conventional feed-
forward network plus a residual connection. The residual layer output can be identi-
fied as the (l − 1)th outputs, which are delivered from the preceding layer (xl − 1) . 
After executing different operations [such as convolution using variable-size filters, 
or batch normalization, before applying an activation function like ReLU on (xl − 1) ], 
the output is F(xl − 1) . The ending residual output is xl , which can be mathematically 
represented as in Eq. 18.

There are numerous basic residual blocks included in the residual network. Based on 
the type of the residual network architecture, operations in the residual block are also 
changed [37].

(18)xl = F(xl − 1) + xl − 1
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In comparison to the highway network, ResNet presented shortcut connections 
inside layers to enable cross-layer connectivity, which are parameter-free and data-
independent. Note that the layers characterize non-residual functions when a gated 
shortcut is closed in the highway network. By contrast, the individuality shortcuts are 
never closed, while the residual information is permanently passed in ResNet. Fur-
thermore, ResNet has the potential to prevent the problems of gradient diminishing, 
as the shortcut connections (residual links) accelerate the deep network convergence. 
ResNet was the winner of the 2015-ILSVRC championship with 152 layers of depth; 
this represents 8 times the depth of VGG and 20 times the depth of AlexNet. In com-
parison with VGG, it has lower computational complexity, even with enlarged depth.

Inception: ResNet and Inception‑V3/4

Szegedy et  al. [103, 109, 110] proposed Inception-ResNet and Inception-V3/4 as 
upgraded types of Inception-V1/2. The concept behind Inception-V3 was to minimize 
the computational cost with no effect on the deeper network generalization. Thus, 
Szegedy et  al. used asymmetric small-size filters ( 1 × 5 and 1 × 7 ) rather than large-
size filters ( 7 × 7 and 5 × 5 ); moreover, they utilized a bottleneck of 1 × 1 convolution 
prior to the large-size filters [110]. These changes make the operation of the traditional 

Fig. 20 The block diagram for ResNet
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convolution very similar to cross-channel correlation. Previously, Lin et al. utilized the 
1 × 1 filter potential in NIN architecture [94]. Subsequently, [110] utilized the same 
idea in an intelligent manner. By using 1 × 1 convolutional operation in Inception-V3, 
the input data are mapped into three or four isolated spaces, which are smaller than the 
initial input spaces. Next, all of these correlations are mapped in these smaller spaces 
through common 5 × 5 or 3 × 3 convolutions. By contrast, in Inception-ResNet, Szegedy 
et al. bring together the inception block and the residual learning power by replacing the 
filter concatenation with the residual connection [111]. Szegedy et al. empirically dem-
onstrated that Inception-ResNet (Inception-4 with residual connections) can achieve a 
similar generalization power to Inception-V4 with enlarged width and depth and with-
out residual connections. Thus, it is clearly illustrated that using residual connections in 
training will significantly accelerate the Inception network training. Figure 21 shows The 
basic block diagram for Inception Residual unit.

DenseNet

To solve the problem of the vanishing gradient, DenseNet was presented, following the 
same direction as ResNet and the Highway network [105, 111, 112]. One of the draw-
backs of ResNet is that it clearly conserves information by means of preservative indi-
viduality transformations, as several layers contribute extremely little or no information. 
In addition, ResNet has a large number of weights, since each layer has an isolated group 
of weights. DenseNet employed cross-layer connectivity in an improved approach to 
address this problem [112–114]. It connected each layer to all layers in the network 
using a feed-forward approach. Therefore, the feature maps of each previous layer were 
employed to input into all of the following layers. In traditional CNNs, there are l con-
nections between the previous layer and the current layer, while in DenseNet, there are 
l(l+1)

2  direct connections. DenseNet demonstrates the influence of cross-layer depth 

Fig. 21 The basic block diagram for Inception Residual unit
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wise-convolutions. Thus, the network gains the ability to discriminate clearly between 
the added and the preserved information, since DenseNet concatenates the features of 
the preceding layers rather than adding them. However, due to its narrow layer struc-
ture, DenseNet becomes parametrically high-priced in addition to the increased number 
of feature maps. The direct admission of all layers to the gradients via the loss function 
enhances the information flow all across the network. In addition, this includes a regu-
larizing impact, which minimizes overfitting on tasks alongside minor training sets. Fig-
ure 22 shows the architecture of DenseNet Network.

ResNext

ResNext is an enhanced version of the Inception Network [115]. It is also known as the 
Aggregated Residual Transform Network. Cardinality, which is a new term presented by 
[115], utilized the split, transform, and merge topology in an easy and effective way. It 
denotes the size of the transformation set as an extra dimension [116–118]. However, the 
Inception network manages network resources more efficiently, as well as enhancing the 
learning ability of the conventional CNN. In the transformation branch, different spatial 
embeddings (employing e.g. 5 × 5 , 3 × 3 , and 1 × 1 ) are used. Thus, customizing each 
layer is required separately. By contrast, ResNext derives its characteristic features from 
ResNet, VGG, and Inception. It employed the VGG deep homogenous topology with 
the basic architecture of GoogleNet by setting 3 × 3 filters as spatial resolution inside 
the blocks of split, transform, and merge. Figure 23 shows the ResNext building blocks. 
ResNext utilized multi-transformations inside the blocks of split, transform, and merge, 
as well as outlining such transformations in cardinality terms. The performance is sig-
nificantly improved by increasing the cardinality, as Xie et al. showed. The complexity 

Fig. 22 The architecture of DenseNet Network (adopted from [112])
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of ResNext was regulated by employing 1 × 1 filters (low embeddings) ahead of a 3 × 3 
convolution. By contrast, skipping connections are used for optimized training [115].

WideResNet

The feature reuse problem is the core shortcoming related to deep residual networks, 
since certain feature blocks or transformations contribute a very small amount to learn-
ing. Zagoruyko and Komodakis [119] accordingly proposed WideResNet to address this 
problem. These authors advised that the depth has a supplemental influence, while the 
residual units convey the core learning ability of deep residual networks. WideResNet 
utilized the residual block power via making the ResNet wider instead of deeper [37]. It 
enlarged the width by presenting an extra factor, k, which handles the network width. 
In other words, it indicated that layer widening is a highly successful method of per-
formance enhancement compared to deepening the residual network. While enhanced 
representational capacity is achieved by deep residual networks, these networks also 
have certain drawbacks, such as the exploding and vanishing gradient problems, feature 
reuse problem (inactivation of several feature maps), and the time-intensive nature of 
the training. He et al. [37] tackled the feature reuse problem by including a dropout in 
each residual block to regularize the network in an efficient manner. In a similar manner, 
utilizing dropouts, Huang et al. [120] presented the stochastic depth concept to solve the 
slow learning and gradient vanishing problems. Earlier research was focused on increas-
ing the depth; thus, any small enhancement in performance required the addition of 
several new layers. When comparing the number of parameters, WideResNet has twice 
that of ResNet, as an experimental study showed. By contrast, WideResNet presents an 
improved method for training relative to deep networks [119]. Note that most architec-
tures prior to residual networks (including the highly effective VGG and Inception) were 
wider than ResNet. Thus, wider residual networks were established once this was deter-
mined. However, inserting a dropout between the convolutional layers (as opposed to 
within the residual block) made the learning more effective in WideResNet [121, 122].

Pyramidal Net

The depth of the feature map increases in the succeeding layer due to the deep stack-
ing of multi-convolutional layers, as shown in previous deep CNN architectures such as 

Fig. 23 The basic block diagram for the ResNext building blocks
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ResNet, VGG, and AlexNet. By contrast, the spatial dimension reduces, since a sub-sam-
pling follows each convolutional layer. Thus, augmented feature representation is recom-
pensed by decreasing the size of the feature map. The extreme expansion in the depth 
of the feature map, alongside the spatial information loss, interferes with the learning 
ability in the deep CNNs. ResNet obtained notable outcomes for the issue of image clas-
sification. Conversely, deleting a convolutional block—in which both the number of 
channel and spatial dimensions vary (channel depth enlarges, while spatial dimension 
reduces)—commonly results in decreased classifier performance. Accordingly, the sto-
chastic ResNet enhanced the performance by decreasing the information loss accom-
panying the residual unit drop. Han et al. [123] proposed Pyramidal Net to address the 
ResNet learning interference problem. To address the depth enlargement and extreme 
reduction in spatial width via ResNet, Pyramidal Net slowly enlarges the residual unit 
width to cover the most feasible places rather than saving the same spatial dimension 
inside all residual blocks up to the appearance of the down-sampling. It was referred to 
as Pyramidal Net due to the slow enlargement in the feature map depth based on the 
up-down method. Factor l, which was determined by Eq. 19, regulates the depth of the 
feature map.

Here, the dimension of the lth residual unit is indicated by dl ; moreover, n indicates the 
overall number of residual units, the step factor is indicated by � , and the depth increase 
is regulated by the factor �n , which uniformly distributes the weight increase across the 
dimension of the feature map. Zero-padded identity mapping is used to insert the resid-
ual connections among the layers. In comparison to the projection-based shortcut con-
nections, zero-padded identity mapping requires fewer parameters, which in turn leads 
to enhanced generalization [124]. Multiplication- and addition-based widening are two 
different approaches used in Pyramidal Nets for network widening. More specifically, 
the first approach (multiplication) enlarges geometrically, while the second one (addi-
tion) enlarges linearly [92]. The main problem associated with the width enlargement is 
the growth in time and space required related to the quadratic time.

Xception

Extreme inception architecture is the main characteristic of Xception. The main idea 
behind Xception is its depthwise separable convolution [125]. The Xception model 
adjusted the original inception block by making it wider and exchanging a single 
dimension ( 3 × 3 ) followed by a 1 × 1 convolution to reduce computational complex-
ity. Figure  24 shows the Xception block architecture. The Xception network becomes 
extra computationally effective through the use of the decoupling channel and spatial 
correspondence. Moreover, it first performs mapping of the convolved output to the 
embedding short dimension by applying 1 × 1 convolutions. It then performs k spatial 
transformations. Note that k here represents the width-defining cardinality, which is 
obtained via the transformations number in Xception. However, the computations were 
made simpler in Xception by distinctly convolving each channel around the spatial axes. 

(19)dl =

{

16 if l = 1
⌊

dl−1 + �

n

⌋

if 2 ≤ l ≤ n + 1

}
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These axes are subsequently used as the 1 × 1 convolutions (pointwise convolution) for 
performing cross-channel correspondence. The 1 × 1 convolution is utilized in Xception 
to regularize the depth of the channel. The traditional convolutional operation in Xcep-
tion utilizes a number of transformation segments equivalent to the number of channels; 
Inception, moreover, utilizes three transformation segments, while traditional CNN 
architecture utilizes only a single transformation segment. Conversely, the suggested 
Xception transformation approach achieves extra learning efficiency and better perfor-
mance but does not minimize the number of parameters [126, 127].

Residual attention neural network

To improve the network feature representation, Wang et al. [128] proposed the Residual 
Attention Network (RAN). Enabling the network to learn aware features of the object is 
the main purpose of incorporating attention into the CNN. The RAN consists of stacked 
residual blocks in addition to the attention module; hence, it is a feed-forward CNN. 
However, the attention module is divided into two branches, namely the mask branch 
and trunk branch. These branches adopt a top-down and bottom-up learning strategy 
respectively. Encapsulating two different strategies in the attention model supports top-
down attention feedback and fast feed-forward processing in only one particular feed-
forward process. More specifically, the top-down architecture generates dense features 
to make inferences about every aspect. Moreover, the bottom-up feedforward architec-
ture generates low-resolution feature maps in addition to robust semantic information. 
Restricted Boltzmann machines employed a top-down bottom-up strategy as in previ-
ously proposed studies [129]. During the training reconstruction phase, Goh et al. [130] 
used the mechanism of top-down attention in deep Boltzmann machines (DBMs) as a 
regularizing factor. Note that the network can be globally optimized using a top-down 
learning strategy in a similar manner, where the maps progressively output to the input 
throughout the learning process [129–132].

Incorporating the attention concept with convolutional blocks in an easy way was used 
by the transformation network, as obtained in a previous study [133]. Unfortunately, 
these are inflexible, which represents the main problem, along with their inability to be 

Fig. 24 The basic block diagram for the Xception block architecture
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used for varying surroundings. By contrast, stacking multi-attention modules has made 
RAN very effective at recognizing noisy, complex, and cluttered images. RAN’s hierar-
chical organization gives it the capability to adaptively allocate a weight for every feature 
map depending on its importance within the layers. Furthermore, incorporating three 
distinct levels of attention (spatial, channel, and mixed) enables the model to use this 
ability to capture the object-aware features at these distinct levels.

Convolutional block attention module

The importance of the feature map utilization and the attention mechanism is certified 
via SE-Network and RAN [128, 134, 135]. The convolutional block attention (CBAM) 
module, which is a novel attention-based CNN, was first developed by Woo et al. [136]. 
This module is similar to SE-Network and simple in design. SE-Network disregards the 
object’s spatial locality in the image and considers only the channels’ contribution during 
the image classification. Regarding object detection, object spatial location plays a sig-
nificant role. The convolutional block attention module sequentially infers the attention 
maps. More specifically, it applies channel attention preceding the spatial attention to 
obtain the refined feature maps. Spatial attention is performed using 1 × 1 convolution 
and pooling functions, as in the literature. Generating an effective feature descriptor can 
be achieved by using a spatial axis along with the pooling of features. In addition, gen-
erating a robust spatial attention map is possible, as CBAM concatenates the max pool-
ing and average pooling operations. In a similar manner, a collection of GAP and max 
pooling operations is used to model the feature map statistics. Woo et al. [136] demon-
strated that utilizing GAP will return a sub-optimized inference of channel attention, 
whereas max pooling provides an indication of the distinguishing object features. Thus, 
the utilization of max pooling and average pooling enhances the network’s representa-
tional power. The feature maps improve the representational power, as well as facilitating 
a focus on the significant portion of the chosen features. The expression of 3D attention 
maps through a serial learning procedure assists in decreasing the computational cost 
and the number of parameters, as Woo et al. [136] experimentally proved. Note that any 
CNN architecture can be simply integrated with CBAM.

Concurrent spatial and channel excitation mechanism

To make the work valid for segmentation tasks, Roy et al. [137, 138] expanded Hu et al. 
[134] effort by adding the influence of spatial information to the channel information. 
Roy et al. [137, 138] presented three types of modules: (1) channel squeeze and excita-
tion with concurrent channels (scSE); (2) exciting spatially and squeezing channel-wise 
(sSE); (3) exciting channel-wise and squeezing spatially (cSE). For segmentation pur-
poses, they employed auto-encoder-based CNNs. In addition, they suggested inserting 
modules following the encoder and decoder layers. To specifically highlight the object-
specific feature maps, they further allocated attention to every channel by expressing a 
scaling factor from the channel and spatial information in the first module (scSE). In the 
second module (sSE), the feature map information has lower importance than the spatial 
locality, as the spatial information plays a significant role during the segmentation pro-
cess. Therefore, several channel collections are spatially divided and developed so that 
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they can be employed in segmentation. In the final module (cSE), a similar SE-block con-
cept is used. Furthermore, the scaling factor is derived founded on the contribution of 
the feature maps within the object detection [137, 138].

CapsuleNet

CNN is an efficient technique for detecting object features and achieving well-behaved 
recognition performance in comparison with innovative handcrafted feature detectors. 
A number of restrictions related to CNN are present, meaning that the CNN does not 
consider certain relations, orientation, size, and perspectives of features. For instance, 
when considering a face image, the CNN does not count the various face components 
(such as mouth, eyes, nose, etc.) positions, and will incorrectly activate the CNN neu-
rons and recognize the face without taking specific relations (such as size, orientation 
etc.) into account. At this point, consider a neuron that has probability in addition to 
feature properties such as size, orientation, perspective, etc. A specific neuron/capsule of 
this type has the ability to effectively detect the face along with different types of infor-
mation. Thus, many layers of capsule nodes are used to construct the capsule network. 
An encoding unit, which contains three layers of capsule nodes, forms the CapsuleNet 
or CapsNet (the initial version of the capsule networks).

For example, the MNIST architecture comprises 28 × 28 images, applying 256 filters 
of size 9 × 9 and with stride 1. The 28 − 9 + 1 = 20 is the output plus 256 feature maps. 
Next, these outputs are input to the first capsule layer, while producing an 8D vector 
rather than a scalar; in fact, this is a modified convolution layer. Note that a stride 2 
with 9 × 9 filters is employed in the first convolution layer. Thus, the dimension of the 
output is (20 − 9)/2 + 1 = 6 . The initial capsules employ 8 × 32 filters, which generate 
32 × 8 × 6 × 6 (32 for groups, 8 for neurons, while 6 × 6 is the neuron size).

Figure 25 represents the complete CapsNet encoding and decoding processes. In the 
CNN context, a max-pooling layer is frequently employed to handle the translation 
change. It can detect the feature moves in the event that the feature is still within the 
max-pooling window. This approach has the ability to detect the overlapped features; 

Fig. 25 The complete CapsNet encoding and decoding processes
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this is highly significant in detection and segmentation operations, since the capsule 
involves the weighted features sum from the preceding layer.

In conventional CNNs, a particular cost function is employed to evaluate the global 
error that grows toward the back throughout the training process. Conversely, in such 
cases, the activation of a neuron will not grow further once the weight between two 
neurons turns out to be zero. Instead of a single size being provided with the com-
plete cost function in repetitive dynamic routing alongside the agreement, the signal 
is directed based on the feature parameters. Sabour et al. [139] provides more details 
about this architecture. When using MNIST to recognize handwritten digits, this 
innovative CNN architecture gives superior accuracy. From the application perspec-
tive, this architecture has extra suitability for segmentation and detection approaches 
when compared with classification approaches [140–142].

High‑resolution network (HRNet)

High-resolution representations are necessary for position-sensitive vision tasks, 
such as semantic segmentation, object detection, and human pose estimation. In the 
present up-to-date frameworks, the input image is encoded as a low-resolution repre-
sentation using a subnetwork that is constructed as a connected series of high-to-low 
resolution convolutions such as VGGNet and ResNet. The low-resolution representa-
tion is then recovered to become a high-resolution one. Alternatively, high-resolu-
tion representations are maintained during the entire process using a novel network, 
referred to as a High-Resolution Network (HRNet) [143, 144]. This network has two 
principal features. First, the convolution series of high-to-low resolutions are con-
nected in parallel. Second, the information across the resolutions are repeatedly 
exchanged. The advantage achieved includes getting a representation that is more 
accurate in the spatial domain and extra-rich in the semantic domain. Moreover, 
HRNet has several applications in the fields of object detection, semantic segmenta-
tion, and human pose prediction. For computer vision problems, the HRNet repre-
sents a more robust backbone. Figure 26 illustrates the general architecture of HRNet.

Challenges (limitations) of deep learning and alternate solutions
When employing DL, several difficulties are often taken into consideration. Those 
more challenging are listed next and several possible alternatives are accordingly 
provided.

Fig. 26 The general architecture of HRNet



Page 42 of 74Alzubaidi et al. J Big Data            (2021) 8:53 

Training data

DL is extremely data-hungry considering it also involves representation learning [145, 
146]. DL demands an extensively large amount of data to achieve a well-behaved per-
formance model, i.e. as the data increases, an extra well-behaved performance model 
can be achieved (Fig. 27). In most cases, the available data are sufficient to obtain a 
good performance model. However, sometimes there is a shortage of data for using 
DL directly [87]. To properly address this issue, three suggested methods are avail-
able. The first involves the employment of the transfer-learning concept after data is 
collected from similar tasks. Note that while the transferred data will not directly aug-
ment the actual data, it will help in terms of both enhancing the original input repre-
sentation of data and its mapping function [147]. In this way, the model performance 
is boosted. Another technique involves employing a well-trained model from a similar 
task and fine-tuning the ending of two layers or even one layer based on the limited 
original data. Refer to [148, 149] for a review of different transfer-learning techniques 
applied in the DL approach. In the second method, data augmentation is performed 
[150]. This task is very helpful for use in augmenting the image data, since the image 
translation, mirroring, and rotation commonly do not change the image label. Con-
versely, it is important to take care when applying this technique in some cases such 
as with bioinformatics data. For instance, when mirroring an enzyme sequence, the 
output data may not represent the actual enzyme sequence. In the third method, the 
simulated data can be considered for increasing the volume of the training set. It is 
occasionally possible to create simulators based on the physical process if the issue is 
well understood. Therefore, the result will involve the simulation of as much data as 
needed. Processing the data requirement for DL-based simulation is obtained as an 
example in Ref. [151].

Transfer learning

Recent research has revealed a widespread use of deep CNNs, which offer ground-
breaking support for answering many classification problems. Generally speaking, 
deep CNN models require a sizable volume of data to obtain good performance. The 

Fig. 27 The performance of DL regarding the amount of data
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common challenge associated with using such models concerns the lack of training 
data. Indeed, gathering a large volume of data is an exhausting job, and no successful 
solution is available at this time. The undersized dataset problem is therefore cur-
rently solved using the TL technique [148, 149], which is highly efficient in address-
ing the lack of training data issue. The mechanism of TL involves training the CNN 
model with large volumes of data. In the next step, the model is fine-tuned for train-
ing on a small request dataset.

The student-teacher relationship is a suitable approach to clarifying TL. Gathering 
detailed knowledge of the subject is the first step [152]. Next, the teacher provides a 
“course” by conveying the information within a “lecture series” over time. Put simply, 
the teacher transfers the information to the student. In more detail, the expert (teacher) 
transfers the knowledge (information) to the learner (student). Similarly, the DL network 
is trained using a vast volume of data, and also learns the bias and the weights during the 
training process. These weights are then transferred to different networks for retraining 
or testing a similar novel model. Thus, the novel model is enabled to pre-train weights 
rather than requiring training from scratch. Figure 28 illustrates the conceptual diagram 
of the TL technique. 

1. Pre-trained models: Many CNN models, e.g. AlexNet [30], GoogleNet [103], and 
ResNet [37], have been trained on large datasets such as ImageNet for image rec-
ognition purposes. These models can then be employed to recognize a different task 
without the need to train from scratch. Furthermore, the weights remain the same 
apart from a few learned features. In cases where data samples are lacking, these 
models are very useful. There are many reasons for employing a pre-trained model. 
First, training large models on sizeable datasets requires high-priced computational 
power. Second, training large models can be time-consuming, taking up to multiple 
weeks. Finally, a pre-trained model can assist with network generalization and speed 
up the convergence.

Fig. 28 The conceptual diagram of the TL technique
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2. A research problem using pre-trained models: Training a DL approach requires a 
massive number of images. Thus, obtaining good performance is a challenge under 
these circumstances. Achieving excellent outcomes in image classification or rec-
ognition applications, with performance occasionally superior to that of a human, 
becomes possible through the use of deep convolutional neural networks (DCNNs) 
including several layers if a huge amount of data is available [37, 148, 153]. How-
ever, avoiding overfitting problems in such applications requires sizable datasets and 
properly generalizing DCNN models. When training a DCNN model, the dataset 
size has no lower limit. However, the accuracy of the model becomes insufficient 
in the case of the utilized model has fewer layers, or if a small dataset is used for 
training due to over- or under-fitting problems. Due to they have no ability to uti-
lize the hierarchical features of sizable datasets, models with fewer layers have poor 
accuracy. It is difficult to acquire sufficient training data for DL models. For exam-
ple, in medical imaging and environmental science, gathering labelled datasets is 
very costly [148]. Moreover, the majority of the crowdsourcing workers are unable to 
make accurate notes on medical or biological images due to their lack of medical or 
biological knowledge. Thus, ML researchers often rely on field experts to label such 
images; however, this process is costly and time consuming. Therefore, producing 
the large volume of labels required to develop flourishing deep networks turns out 
to be unfeasible. Recently, TL has been widely employed to address the later issue. 
Nevertheless, although TL enhances the accuracy of several tasks in the fields of pat-
tern recognition and computer vision [154, 155], there is an essential issue related to 
the source data type used by the TL as compared to the target dataset. For instance, 
enhancing the medical image classification performance of CNN models is achieved 
by training the models using the ImageNet dataset, which contains natural images 
[153]. However, such natural images are completely dissimilar from the raw medical 
images, meaning that the model performance is not enhanced. It has further been 
proven that TL from different domains does not significantly affect performance on 
medical imaging tasks, as lightweight models trained from scratch perform nearly 
as well as standard ImageNet-transferred models [156]. Therefore, there exists sce-
narios in which using pre-trained models do not become an affordable solution. In 
2020, some researchers have utilized same-domain TL and achieved excellent results 
[86–88, 157]. Same-domain TL is an approach of using images that look similar to 
the target dataset for training. For example, using X-ray images of different chest dis-
eases to train the model, then fine-tuning and training it on chest X-ray images for 
COVID-19 diagnosis. More details about same-domain TL and how to implement 
the fine-tuning process can be found in [87].

Data augmentation techniques

If the goal is to increase the amount of available data and avoid the overfitting issue, data 
augmentation techniques are one possible solution [150, 158, 159]. These techniques are 
data-space solutions for any limited-data problem. Data augmentation incorporates a 
collection of methods that improve the attributes and size of training datasets. Thus, DL 



Page 45 of 74Alzubaidi et al. J Big Data            (2021) 8:53  

networks can perform better when these techniques are employed. Next, we list some 
data augmentation alternate solutions. 

1. Flipping: Flipping the vertical axis is a less common practice than flipping the hori-
zontal one. Flipping has been verified as valuable on datasets like ImageNet and 
CIFAR-10. Moreover, it is highly simple to implement. In addition, it is not a label-
conserving transformation on datasets that involve text recognition (such as SVHN 
and MNIST).

2. Color space: Encoding digital image data is commonly used as a dimension tensor 
( height × width × colorchannels ). Accomplishing augmentations in the color space 
of the channels is an alternative technique, which is extremely workable for imple-
mentation. A very easy color augmentation involves separating a channel of a par-
ticular color, such as Red, Green, or Blue. A simple way to rapidly convert an image 
using a single-color channel is achieved by separating that matrix and inserting addi-
tional double zeros from the remaining two color channels. Furthermore, increas-
ing or decreasing the image brightness is achieved by using straightforward matrix 
operations to easily manipulate the RGB values. By deriving a color histogram that 
describes the image, additional improved color augmentations can be obtained. 
Lighting alterations are also made possible by adjusting the intensity values in histo-
grams similar to those employed in photo-editing applications.

3. Cropping: Cropping a dominant patch of every single image is a technique employed 
with combined dimensions of height and width as a specific processing step for 
image data. Furthermore, random cropping may be employed to produce an impact 
similar to translations. The difference between translations and random cropping is 
that translations conserve the spatial dimensions of this image, while random crop-
ping reduces the input size [for example from (256, 256) to (224, 224)]. According to 
the selected reduction threshold for cropping, the label-preserving transformation 
may not be addressed.

4. Rotation: When rotating an image left or right from within 0 to 360 degrees around 
the axis, rotation augmentations are obtained. The rotation degree parameter greatly 
determines the suitability of the rotation augmentations. In digit recognition tasks, 
small rotations (from 0 to 20 degrees) are very helpful. By contrast, the data label 
cannot be preserved post-transformation when the rotation degree increases.

5. Translation: To avoid positional bias within the image data, a very useful transforma-
tion is to shift the image up, down, left, or right. For instance, it is common that the 
whole dataset images are centered; moreover, the tested dataset should be entirely 
made up of centered images to test the model. Note that when translating the initial 
images in a particular direction, the residual space should be filled with Gaussian or 
random noise, or a constant value such as 255 s or 0 s. The spatial dimensions of the 
image post-augmentation are preserved using this padding.

6. Noise injection This approach involves injecting a matrix of arbitrary values. Such 
a matrix is commonly obtained from a Gaussian distribution. Moreno-Barea et  al. 
[160] employed nine datasets to test the noise injection. These datasets were taken 
from the UCI repository [161]. Injecting noise within images enables the CNN to 
learn additional robust features.
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 However, highly well-behaved solutions for positional biases available within the 
training data are achieved by means of geometric transformations. To separate the 
distribution of the testing data from the training data, several prospective sources 
of bias exist. For instance, when all faces should be completely centered within the 
frames (as in facial recognition datasets), the problem of positional biases emerges. 
Thus, geometric translations are the best solution. Geometric translations are helpful 
due to their simplicity of implementation, as well as their effective capability to dis-
able the positional biases. Several libraries of image processing are available, which 
enables beginning with simple operations such as rotation or horizontal flipping. 
Additional training time, higher computational costs, and additional memory are 
some shortcomings of geometric transformations. Furthermore, a number of geo-
metric transformations (such as arbitrary cropping or translation) should be manu-
ally observed to ensure that they do not change the image label. Finally, the biases 
that separate the test data from the training data are more complicated than transi-
tional and positional changes. Hence, it is not trivial answering to when and where 
geometric transformations are suitable to be applied.

Imbalanced data

Commonly, biological data tend to be imbalanced, as negative samples are much more 
numerous than positive ones [162–164]. For example, compared to COVID-19-positive 
X-ray images, the volume of normal X-ray images is very large. It should be noted that 
undesirable results may be produced when training a DL model using imbalanced data. 
The following techniques are used to solve this issue. First, it is necessary to employ the 
correct criteria for evaluating the loss, as well as the prediction result. In considering 
the imbalanced data, the model should perform well on small classes as well as larger 
ones. Thus, the model should employ area under curve (AUC) as the resultant loss as 
well as the criteria [165]. Second, it should employ the weighted cross-entropy loss, 
which ensures the model will perform well with small classes if it still prefers to employ 
the cross-entropy loss. Simultaneously, during model training, it is possible either to 
down-sample the large classes or up-sample the small classes. Finally, to make the data 
balanced as in Ref. [166], it is possible to construct models for every hierarchical level, 
as a biological system frequently has hierarchical label space. However, the effect of the 
imbalanced data on the performance of the DL model has been comprehensively inves-
tigated. In addition, to lessen the problem, the most frequently used techniques were 
also compared. Nevertheless, note that these techniques are not specified for biological 
problems.

Interpretability of data

Occasionally, DL techniques are analyzed to act as a black box. In fact, they are inter-
pretable. The need for a method of interpreting DL, which is used to obtain the valu-
able motifs and patterns recognized by the network, is common in many fields, such as 
bioinformatics [167]. In the task of disease diagnosis, it is not only required to know the 
disease diagnosis or prediction results of a trained DL model, but also how to enhance 
the surety of the prediction outcomes, as the model makes its decisions based on these 
verifications [168]. To achieve this, it is possible to give a score of importance for every 
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portion of the particular example. Within this solution, back-propagation-based tech-
niques or perturbation-based approaches are used [169]. In the perturbation-based 
approaches, a portion of the input is changed and the effect of this change on the model 
output is observed [170–173]. This concept has high computational complexity, but it is 
simple to understand. On the other hand, to check the score of the importance of vari-
ous input portions, the signal from the output propagates back to the input layer in the 
back-propagation-based techniques. These techniques have been proven valuable in 
[174]. In different scenarios, various meanings can represent the model interpretability.

Uncertainty scaling

Commonly, the final prediction label is not the only label required when employing DL 
techniques to achieve the prediction; the score of confidence for every inquiry from the 
model is also desired. The score of confidence is defined as how confident the model is 
in its prediction [175]. Since the score of confidence prevents belief in unreliable and 
misleading predictions, it is a significant attribute, regardless of the application scenario. 
In biology, the confidence score reduces the resources and time expended in proving 
the outcomes of the misleading prediction. Generally speaking, in healthcare or similar 
applications, the uncertainty scaling is frequently very significant; it helps in evaluating 
automated clinical decisions and the reliability of machine learning-based disease-diag-
nosis [176, 177]. Because overconfident prediction can be the output of different DL 
models, the score of probability (achieved from the softmax output of the direct-DL) is 
often not in the correct scale [178]. Note that the softmax output requires post-scaling 
to achieve a reliable probability score. For outputting the probability score in the cor-
rect scale, several techniques have been introduced, including Bayesian Binning into 
Quantiles (BBQ) [179], isotonic regression [180], histogram binning [181], and the leg-
endary Platt scaling [182]. More specifically, for DL techniques, temperature scaling 
was recently introduced, which achieves superior performance compared to the other 
techniques.

Catastrophic forgetting

This is defined as incorporating new information into a plain DL model, made possible 
by interfering with the learned information. For instance, consider a case where there 
are 1000 types of flowers and a model is trained to classify these flowers, after which 
a new type of flower is introduced; if the model is fine-tuned only with this new class, 
its performance will become unsuccessful with the older classes [183, 184]. The logical 
data are continually collected and renewed, which is in fact a highly typical scenario in 
many fields, e.g. Biology. To address this issue, there is a direct solution that involves 
employing old and new data to train an entirely new model from scratch. This solution 
is time-consuming and computationally intensive; furthermore, it leads to an unstable 
state for the learned representation of the initial data. At this time, three different types 
of ML techniques, which have not catastrophic forgetting, are made available to solve 
the human brain problem founded on the neurophysiological theories [185, 186]. Tech-
niques of the first type are founded on regularizations such as EWC [183] Techniques 
of the second type employ rehearsal training techniques and dynamic neural network 
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architecture like iCaRL [187, 188]. Finally, techniques of the third type are founded on 
dual-memory learning systems [189]. Refer to [190–192] in order to gain more details.

Model compression

To obtain well-trained models that can still be employed productively, DL models have 
intensive memory and computational requirements due to their huge complexity and 
large numbers of parameters [193, 194]. One of the fields that is characterized as data-
intensive is the field of healthcare and environmental science. These needs reduce the 
deployment of DL in limited computational-power machines, mainly in the healthcare 
field. The numerous methods of assessing human health and the data heterogeneity have 
become far more complicated and vastly larger in size [195]; thus, the issue requires 
additional computation [196]. Furthermore, novel hardware-based parallel processing 
solutions such as FPGAs and GPUs [197–199] have been developed to solve the com-
putation issues associated with DL. Recently, numerous techniques for compressing 
the DL models, designed to decrease the computational issues of the models from the 
starting point, have also been introduced. These techniques can be classified into four 
classes. In the first class, the redundant parameters (which have no significant impact on 
model performance) are reduced. This class, which includes the famous deep compres-
sion method, is called parameter pruning [200]. In the second class, the larger model 
uses its distilled knowledge to train a more compact model; thus, it is called knowledge 
distillation [201, 202]. In the third class, compact convolution filters are used to reduce 
the number of parameters [203]. In the final class, the information parameters are esti-
mated for preservation using low-rank factorization [204]. For model compression, these 
classes represent the most representative techniques. In [193], it has been provided a 
more comprehensive discussion about the topic.

Overfitting

DL models have excessively high possibilities of resulting in data overfitting at the train-
ing stage due to the vast number of parameters involved, which are correlated in a com-
plex manner. Such situations reduce the model’s ability to achieve good performance on 
the tested data [90, 205]. This problem is not only limited to a specific field, but involves 
different tasks. Therefore, when proposing DL techniques, this problem should be fully 
considered and accurately handled. In DL, the implied bias of the training process 
enables the model to overcome crucial overfitting problems, as recent studies suggest 
[205–208]. Even so, it is still necessary to develop techniques that handle the overfit-
ting problem. An investigation of the available DL algorithms that ease the overfitting 
problem can categorize them into three classes. The first class acts on both the model 
architecture and model parameters and includes the most familiar approaches, such as 
weight decay [209], batch normalization [210], and dropout [90]. In DL, the default tech-
nique is weight decay [209], which is used extensively in almost all ML algorithms as a 
universal regularizer. The second class works on model inputs such as data corruption 
and data augmentation [150, 211]. One reason for the overfitting problem is the lack 
of training data, which makes the learned distribution not mirror the real distribution. 
Data augmentation enlarges the training data. By contrast, marginalized data corrup-
tion improves the solution exclusive to augmenting the data. The final class works on the 
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model output. A recently proposed technique penalizes the over-confident outputs for 
regularizing the model [178]. This technique has demonstrated the ability to regularize 
RNNs and CNNs.

Vanishing gradient problem

In general, when using backpropagation and gradient-based learning techniques along 
with ANNs, largely in the training stage, a problem called the vanishing gradient prob-
lem arises [212–214]. More specifically, in each training iteration, every weight of the 
neural network is updated based on the current weight and is proportionally relative to 
the partial derivative of the error function. However, this weight updating may not occur 
in some cases due to a vanishingly small gradient, which in the worst case means that no 
extra training is possible and the neural network will stop completely. Conversely, simi-
larly to other activation functions, the sigmoid function shrinks a large input space to a 
tiny input space. Thus, the derivative of the sigmoid function will be small due to large 
variation at the input that produces a small variation at the output. In a shallow network, 
only some layers use these activations, which is not a significant issue. While using more 
layers will lead the gradient to become very small in the training stage, in this case, the 
network works efficiently. The back-propagation technique is used to determine the gra-
dients of the neural networks. Initially, this technique determines the network deriva-
tives of each layer in the reverse direction, starting from the last layer and progressing 
back to the first layer. The next step involves multiplying the derivatives of each layer 
down the network in a similar manner to the first step. For instance, multiplying N small 
derivatives together when there are N hidden layers employs an activation function such 
as the sigmoid function. Hence, the gradient declines exponentially while propagating 
back to the first layer. More specifically, the biases and weights of the first layers cannot 
be updated efficiently during the training stage because the gradient is small. Moreover, 
this condition decreases the overall network accuracy, as these first layers are frequently 
critical to recognizing the essential elements of the input data. However, such a problem 
can be avoided through employing activation functions. These functions lack the squish-
ing property, i.e., the ability to squish the input space to within a small space. By mapping 
X to max, the ReLU [91] is the most popular selection, as it does not yield a small deriva-
tive that is employed in the field. Another solution involves employing the batch nor-
malization layer [81]. As mentioned earlier, the problem occurs once a large input space 
is squashed into a small space, leading to vanishing the derivative. Employing batch nor-
malization degrades this issue by simply normalizing the input, i.e., the expression |x| 
does not accomplish the exterior boundaries of the sigmoid function. The normalization 
process makes the largest part of it come down in the green area, which ensures that the 
derivative is large enough for further actions. Furthermore, faster hardware can tackle 
the previous issue, e.g. that provided by GPUs. This makes standard back-propagation 
possible for many deeper layers of the network compared to the time required to recog-
nize the vanishing gradient problem [215].
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Exploding gradient problem

Opposite to the vanishing problem is the one related to gradient. Specifically, large error 
gradients are accumulated during back-propagation [216–218]. The latter will lead to 
extremely significant updates to the weights of the network, meaning that the system 
becomes unsteady. Thus, the model will lose its ability to learn effectively. Grosso modo, 
moving backward in the network during back-propagation, the gradient grows exponen-
tially by repetitively multiplying gradients. The weight values could thus become incred-
ibly large and may overflow to become a not-a-number (NaN) value. Some potential 
solutions include: 

1. Using different weight regularization techniques.
2. Redesigning the architecture of the network model.

Underspecification

In 2020, a team of computer scientists at Google has identified a new challenge called 
underspecification [219]. ML models including DL models often show surprisingly poor 
behavior when they are tested in real-world applications such as computer vision, medi-
cal imaging, natural language processing, and medical genomics. The reason behind the 
weak performance is due to underspecification. It has been shown that small modifica-
tions can force a model towards a completely different solution as well as lead to dif-
ferent predictions in deployment domains. There are different techniques of addressing 
underspecification issue. One of them is to design “stress tests” to examine how good 
a model works on real-world data and to find out the possible issues. Nevertheless, 
this demands a reliable understanding of the process the model can work inaccurately. 
The team stated that “Designing stress tests that are well-matched to applied require-
ments, and that provide good “coverage” of potential failure modes is a major challenge”. 
Underspecification puts major constraints on the credibility of ML predictions and may 
require some reconsidering over certain applications. Since ML is linked to human by 
serving several applications such as medical imaging and self-driving cars, it will require 
proper attention to this issue.

Applications of deep learning
Presently, various DL applications are widespread around the world. These applica-
tions include healthcare, social network analysis, audio and speech processing (like rec-
ognition and enhancement), visual data processing methods (such as multimedia data 
analysis and computer vision), and NLP (translation and sentence classification), among 
others (Fig. 29) [220–224]. These applications have been classified into five categories: 
classification, localization, detection, segmentation, and registration. Although each of 
these tasks has its own target, there is fundamental overlap in the pipeline implementa-
tion of these applications as shown in Fig. 30. Classification is a concept that categorizes 
a set of data into classes. Detection is used to locate interesting objects in an image with 
consideration given to the background. In detection, multiple objects, which could be 
from dissimilar classes, are surrounded by bounding boxes. Localization is the concept 
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used to locate the object, which is surrounded by a single bounding box. In segmenta-
tion (semantic segmentation), the target object edges are surrounded by outlines, which 
also label them; moreover, fitting a single image (which could be 2D or 3D) onto another 
refers to registration. One of the most important and wide-ranging DL applications are 
in healthcare [225–230]. This area of research is critical due to its relation to human 
lives. Moreover, DL has shown tremendous performance in healthcare. Therefore, we 
take DL applications in the medical image analysis field as an example to describe the DL 
applications.

Fig. 29 Examples of DL applications

Fig. 30 Workflow of deep learning tasks
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Classification

Computer-Aided Diagnosis (CADx) is another title sometimes used for classifica-
tion. Bharati et  al. [231] used a chest X-ray dataset for detecting lung diseases based 
on a CNN. Another study attempted to read X-ray images by employing CNN [232]. 
In this modality, the comparative accessibility of these images has likely enhanced the 
progress of DL. [233] used an improved pre-trained GoogLeNet CNN containing more 
than 150,000 images for training and testing processes. This dataset was augmented 
from 1850 chest X-rays. The creators reorganized the image orientation into lateral and 
frontal views and achieved approximately 100% accuracy. This work of orientation clas-
sification has clinically limited use. As a part of an ultimately fully automated diagno-
sis workflow, it obtained the data augmentation and pre-trained efficiency in learning 
the metadata of relevant images. Chest infection, commonly referred to as pneumo-
nia, is extremely treatable, as it is a commonly occurring health problem worldwide. 
Conversely, Rajpurkar et  al. [234] utilized CheXNet, which is an improved version of 
DenseNet [112] with 121 convolution layers, for classifying fourteen types of disease. 
These authors used the CheXNet14 dataset [235], which comprises 112,000 images. This 
network achieved an excellent performance in recognizing fourteen different diseases. 
In particular, pneumonia classification accomplished a 0.7632 AUC score using receiver 
operating characteristics (ROC) analysis. In addition, the network obtained better than 
or equal to the performance of both a three-radiologist panel and four individual radi-
ologists. Zuo et al. [236] have adopted CNN for candidate classification in lung nodule. 
Shen et al. [237] employed both Random Forest (RF) and SVM classifiers with CNNs to 
classify lung nodules. They employed two convolutional layers with each of the three 
parallel CNNs. The LIDC-IDRI (Lung Image Database Consortium) dataset, which con-
tained 1010-labeled CT lung scans, was used to classify the two types of lung nodules 
(malignant and benign). Different scales of the image patches were used by every CNN 
to extract features, while the output feature vector was constructed using the learned 
features. Next, these vectors were classified into malignant or benign using either the 
RF classifier or SVM with radial basis function (RBF) filter. The model was robust to 
various noisy input levels and achieved an accuracy of 86% in nodule classification. 
Conversely, the model of [238] interpolates the image data missing between PET and 
MRI images using 3D CNNs. The Alzheimer Disease Neuroimaging Initiative (ADNI) 
database, containing 830 PET and MRI patient scans, was utilized in their work. The 
PET and MRI images are used to train the 3D CNNs, first as input and then as output. 
Furthermore, for patients who have no PET images, the 3D CNNs utilized the trained 
images to rebuild the PET images. These rebuilt images approximately fitted the actual 
disease recognition outcomes. However, this approach did not address the overfitting 
issues, which in turn restricted their technique in terms of its possible capacity for gen-
eralization. Diagnosing normal versus Alzheimer’s disease patients has been achieved 
by several CNN models [239, 240]. Hosseini-Asl et al. [241] attained 99% accuracy for 
up-to-date outcomes in diagnosing normal versus Alzheimer’s disease patients. These 
authors applied an auto-encoder architecture using 3D CNNs. The generic brain fea-
tures were pre-trained on the CADDementia dataset. Subsequently, the outcomes of 
these learned features became inputs to higher layers to differentiate between patient 
scans of Alzheimer’s disease, mild cognitive impairment, or normal brains based on the 
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ADNI dataset and using fine-tuned deep supervision techniques. The architectures of 
VGGNet and RNNs, in that order, were the basis of both VOXCNN and ResNet models 
developed by Korolev et al. [242]. They also discriminated between Alzheimer’s disease 
and normal patients using the ADNI database. Accuracy was 79% for Voxnet and 80% 
for ResNet. Compared to Hosseini-Asl’s work, both models achieved lower accuracies. 
Conversely, the implementation of the algorithms was simpler and did not require fea-
ture hand-crafting, as Korolev declared. In 2020, Mehmood et al. [240] trained a devel-
oped CNN-based network called “SCNN” with MRI images for the tasks of classification 
of Alzheimer’s disease. They achieved state-of-the-art results by obtaining an accuracy 
of 99.05%.

Recently, CNN has taken some medical imaging classification tasks to different level 
from traditional diagnosis to automated diagnosis with tremendous performance. Exam-
ples of these tasks are diabetic foot ulcer (DFU) (as normal and abnormal (DFU) classes) 
[87, 243–246], sickle cells anemia (SCA) (as normal, abnormal (SCA), and other blood 
components) [86, 247], breast cancer by classify hematoxylin–eosin-stained breast 
biopsy images into four classes: invasive carcinoma, in-situ carcinoma, benign tumor 
and normal tissue [42, 88, 248–252], and multi-class skin cancer classification [253–255].

In 2020, CNNs are playing a vital role in early diagnosis of the novel coronavirus 
(COVID-2019). CNN has become the primary tool for automatic COVID-19 diagnosis 
in many hospitals around the world using chest X-ray images [256–260]. More details 
about the classification of medical imaging applications can be found in [226, 261–265].

Localization

Although applications in anatomy education could increase, the practicing clinician is 
more likely to be interested in the localization of normal anatomy. Radiological images 
are independently examined and described outside of human intervention, while locali-
zation could be applied in completely automatic end-to-end applications [266–268]. 
Zhao et al. [269] introduced a new deep learning-based approach to localize pancreatic 
tumor in projection X-ray images for image-guided radiation therapy without the need 
for fiducials. Roth et al. [270] constructed and trained a CNN using five convolutional 
layers to classify around 4000 transverse-axial CT images. These authors used five cat-
egories for classification: legs, pelvis, liver, lung, and neck. After data augmentation tech-
niques were applied, they achieved an AUC score of 0.998 and the classification error 
rate of the model was 5.9%. For detecting the positions of the spleen, kidney, heart, and 
liver, Shin et  al. [271] employed stacked auto-encoders on 78 contrast-improved MRI 
scans of the stomach area containing the kidneys or liver. Temporal and spatial domains 
were used to learn the hierarchal features. Based on the organs, these approaches 
achieved detection accuracies of 62–79%. Sirazitdinov et al. [268] presented an aggre-
gate of two convolutional neural networks, namely RetinaNet and Mask R-CNN for 
pneumonia detection and localization.

Detection

Computer-Aided Detection (CADe) is another method used for detection. For both the 
clinician and the patient, overlooking a lesion on a scan may have dire consequences. 
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Thus, detection is a field of study requiring both accuracy and sensitivity [272–274]. 
Chouhan et al. [275] introduced an innovative deep learning framework for the detec-
tion of pneumonia by adopting the idea of transfer learning. Their approach obtained 
an accuracy of 96.4% with a recall of 99.62% on unseen data. In the area of COVID-
19 and pulmonary disease, several convolutional neural network approaches have been 
proposed for automatic detection from X-ray images which showed an excellent perfor-
mance [46, 276–279].

In the area of skin cancer, there several applications were introduced for the detection 
task [280–282]. Thurnhofer-Hemsi et al. [283] introduced a deep learning approach for 
skin cancer detection by fine-tuning five state-of-art convolutional neural network mod-
els. They addressed the issue of a lack of training data by adopting the ideas of transfer 
learning and data augmentation techniques. DenseNet201 network has shown superior 
results compared to other models.

Another interesting area is that of histopathological images, which are progressively 
digitized. Several papers have been published in this field [284–290]. Human patholo-
gists read these images laboriously; they search for malignancy markers, such as a high 
index of cell proliferation, using molecular markers (e.g. Ki-67), cellular necrosis signs, 
abnormal cellular architecture, enlarged numbers of mitotic figures denoting augmented 
cell replication, and enlarged nucleus-to-cytoplasm ratios. Note that the histopathologi-
cal slide may contain a huge number of cells (up to the thousands). Thus, the risk of 
disregarding abnormal neoplastic regions is high when wading through these cells at 
excessive levels of magnification. Ciresan et  al. [291] employed CNNs of 11–13 layers 
for identifying mitotic figures. Fifty breast histology images from the MITOS dataset 
were used. Their technique attained recall and precision scores of 0.7 and 0.88 respec-
tively. Sirinukunwattana et al. [292] utilized 100 histology images of colorectal adenocar-
cinoma to detect cell nuclei using CNNs. Roughly 30,000 nuclei were hand-labeled for 
training purposes. The novelty of this approach was in the use of Spatially Constrained 
CNN. This CNN detects the center of nuclei using the surrounding spatial context and 
spatial regression. Instead of this CNN, Xu et al. [293] employed a stacked sparse auto-
encoder (SSAE) to identify nuclei in histological slides of breast cancer, achieving 0.83 
and 0.89 recall and precision scores respectively. In this field, they showed that unsu-
pervised learning techniques are also effectively utilized. In medical images, Albarquoni 
et  al. [294] investigated the problem of insufficient labeling. They crowd-sourced the 
actual mitoses labeling in the histology images of breast cancer (from amateurs online). 
Solving the recurrent issue of inadequate labeling during the analysis of medical images 
can be achieved by feeding the crowd-sourced input labels into the CNN. This method 
signifies a remarkable proof-of-concept effort. In 2020, Lei et  al. [285] introduced the 
employment of deep convolutional neural networks for automatic identification of 
mitotic candidates from histological sections for mitosis screening. They obtained the 
state-of-the-art detection results on the dataset of the International Pattern Recognition 
Conference (ICPR) 2012 Mitosis Detection Competition.

Segmentation

Although MRI and CT image segmentation research includes different organs such 
as knee cartilage, prostate, and liver, most research work has concentrated on brain 



Page 55 of 74Alzubaidi et al. J Big Data            (2021) 8:53  

segmentation, particularly tumors [295–300]. This issue is highly significant in surgical 
preparation to obtain the precise tumor limits for the shortest surgical resection. Dur-
ing surgery, excessive sacrificing of key brain regions may lead to neurological shortfalls 
including cognitive damage, emotionlessness, and limb difficulty. Conventionally, medi-
cal anatomical segmentation was done by hand; more specifically, the clinician draws 
out lines within the complete stack of the CT or MRI volume slice by slice. Thus, it is 
perfect for implementing a solution that computerizes this painstaking work. Wadhwa 
et  al. [301] presented a brief overview on brain tumor segmentation of MRI images. 
Akkus et  al. [302] wrote a brilliant review of brain MRI segmentation that addressed 
the different metrics and CNN architectures employed. Moreover, they explain several 
competitions in detail, as well as their datasets, which included Ischemic Stroke Lesion 
Segmentation (ISLES), Mild Traumatic brain injury Outcome Prediction (MTOP), and 
Brain Tumor Segmentation (BRATS).

Chen et  al. [299] proposed convolutional neural networks for precise brain tumor 
segmentation. The approach that they employed involves several approaches for better 
features learning including the DeepMedic model, a novel dual-force training scheme, 
a label distribution-based loss function, and Multi-Layer Perceptron-based post-pro-
cessing. They conducted their method on the two most modern brain tumor segmenta-
tion datasets, i.e., BRATS 2017 and BRATS 2015 datasets. Hu et al. [300] introduced the 
brain tumor segmentation method by adopting a multi-cascaded convolutional neural 
network (MCCNN) and fully connected conditional random fields (CRFs). The achieved 
results were excellent compared with the state-of-the-art methods.

Moeskops et al. [303] employed three parallel-running CNNs, each of which had a 2D 
input patch of dissimilar size, for segmenting and classifying MRI brain images. These 
images, which include 35 adults and 22 pre-term infants, were classified into various tis-
sue categories such as cerebrospinal fluid, grey matter, and white matter. Every patch 
concentrates on capturing various image aspects with the benefit of employing three 
dissimilar sizes of input patch; here, the bigger sizes incorporated the spatial features, 
while the lowest patch sizes concentrated on the local textures. In general, the algorithm 
has Dice coefficients in the range of 0.82–0.87 and achieved a satisfactory accuracy. 
Although 2D image slices are employed in the majority of segmentation research, Mil-
letrate et al. [304] implemented 3D CNN for segmenting MRI prostate images. Further-
more, they used the PROMISE2012 challenge dataset, from which fifty MRI scans were 
used for training and thirty for testing. The U-Net architecture of Ronnerberger et al. 
[305] inspired their V-net. This model attained a 0.869 Dice coefficient score, the same 
as the winning teams in the competition. To reduce overfitting and create the model of 
a deeper 11-convolutional layer CNN, Pereira et  al. [306] applied intentionally small-
sized filters of 3x3. Their model used MRI scans of 274 gliomas (a type of brain tumor) 
for training. They achieved first place in the 2013 BRATS challenge, as well as second 
place in the BRATS challenge 2015. Havaei et  al. [307] also considered gliomas using 
the 2013 BRATS dataset. They investigated different 2D CNN architectures. Compared 
to the winner of BRATS 2013, their algorithm worked better, as it required only 3 min 
to execute rather than 100 min. The concept of cascaded architecture formed the basis 
of their model. Thus, it is referred to as an InputCascadeCNN. Employing FC Condi-
tional Random Fields (CRFs), atrous spatial pyramid pooling, and up-sampled filters 
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were techniques introduced by Chen et al. [308]. These authors aimed to enhance the 
accuracy of localization and enlarge the field of view of every filter at a multi-scale. Their 
model, DeepLab, attained 79.7% mIOU (mean Intersection Over Union). In the PAS-
CAL VOC-2012 image segmentation, their model obtained an excellent performance.

Recently, the Automatic segmentation of COVID-19 Lung Infection from CT Images 
helps to detect the development of COVID-19 infection by employing several deep 
learning techniques [309–312].

Registration

Usually, given two input images, the four main stages of the canonical procedure of the 
image registration task are [313, 314]:

• Target Selection: it illustrates the determined input image that the second counter-
part input image needs to remain accurately superimposed to.

• Feature Extraction: it computes the set of features extracted from each input image.
• Feature Matching: it allows finding similarities between the previously obtained fea-

tures.
• Pose Optimization: it is aimed to minimize the distance between both input images.

Then, the result of the registration procedure is the suitable geometric transformation 
(e.g. translation, rotation, scaling, etc.) that provides both input images within the same 
coordinate system in a way the distance between them is minimal, i.e. their level of 
superimposition/overlapping is optimal. It is out of the scope of this work to provide an 
extensive review of this topic. Nevertheless, a short summary is accordingly introduced 
next.

Commonly, the input images for the DL-based registration approach could be in vari-
ous forms, e.g. point clouds, voxel grids, and meshes. Additionally, some techniques 
allow as inputs the result of the Feature Extraction or Matching steps in the canonical 
scheme. Specifically, the outcome could be some data in a particular form as well as the 
result of the steps from the classical pipeline (feature vector, matching vector, and trans-
formation). Nevertheless, with the newest DL-based methods, a novel conceptual type 
of ecosystem issues. It contains acquired characteristics about the target, materials, and 
their behavior that can be registered with the input data. Such a conceptual ecosystem is 
formed by a neural network and its training manner, and it could be counted as an input 
to the registration approach. Nevertheless, it is not an input that one might adopt in 
every registration situation since it corresponds to an interior data representation.

From a DL view-point, the interpretation of the conceptual design enables differen-
tiating the input data of a registration approach into defined or non-defined models. In 
particular, the illustrated phases are models that depict particular spatial data (e.g. 2D or 
3D) while a non-defined one is a generalization of a data set created by a learning system. 
Yumer et al. [315] developed a framework in which the model acquires characteristics of 
objects, meaning ready to identify what a more sporty car seems like or a more comfy 
chair is, also adjusting a 3D model to fit those characteristics while maintaining the main 
characteristics of the primary data. Likewise, a fundamental perspective of the unsuper-
vised learning method introduced by Ding et al. [316] is that there is no target for the 
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registration approach. In this instance, the network is able of placing each input point 
cloud in a global space, solving SLAM issues in which many point clouds have to be reg-
istered rigidly. On the other hand, Mahadevan [317] proposed the combination of two 
conceptual models utilizing the growth of Imagination Machines to give flexible artifi-
cial intelligence systems and relationships between the learned phases through training 
schemes that are not inspired on labels and classifications. Another practical application 
of DL, especially CNNs, to image registration is the 3D reconstruction of objects. Wang 
et al. [318] applied an adversarial way using CNNs to rebuild a 3D model of an object 
from its 2D image. The network learns many objects and orally accomplishes the regis-
tration between the image and the conceptual model. Similarly, Hermoza et al. [319] also 
utilize the GAN network for prognosticating the absent geometry of damaged archaeo-
logical objects, providing the reconstructed object based on a voxel grid format and a 
label selecting its class.

DL for medical image registration has numerous applications, which were listed by 
some review papers [320–322]. Yang et al. [323] implemented stacked convolutional lay-
ers as an encoder-decoder approach to predict the morphing of the input pixel into its 
last formation using MRI brain scans from the OASIS dataset. They employed a regis-
tration model known as Large Deformation Diffeomorphic Metric Mapping (LDDMM) 
and attained remarkable enhancements in computation time. Miao et al. [324] used syn-
thetic X-ray images to train a five-layer CNN to register 3D models of a trans-esophageal 
probe, a hand implant, and a knee implant onto 2D X-ray images for pose estimation. 
They determined that their model achieved an execution time of 0.1 s, representing 
an important enhancement against the conventional registration techniques based on 
intensity; moreover, it achieved effective registrations 79–99% of the time. Li et al. [325] 
introduced a neural network-based approach for the non-rigid 2D–3D registration of 
the lateral cephalogram and the volumetric cone-beam CT (CBCT) images.

Computational approaches
For computationally exhaustive applications, complex ML and DL approaches have rap-
idly been identified as the most significant techniques and are widely used in different 
fields. The development and enhancement of algorithms aggregated with capabilities of 
well-behaved computational performance and large datasets make it possible to effec-
tively execute several applications, as earlier applications were either not possible or dif-
ficult to take into consideration.

Currently, several standard DNN configurations are available. The interconnection 
patterns between layers and the total number of layers represent the main differences 
between these configurations. The Table 2 illustrates the growth rate of the overall num-
ber of layers over time, which seems to be far faster than the “Moore’s Law growth rate”. 
In normal DNN, the number of layers grew by around 2.3× each year in the period from 
2012 to 2016. Recent investigations of future ResNet versions reveal that the number of 
layers can be extended up to 1000. However, an SGD technique is employed to fit the 
weights (or parameters), while different optimization techniques are employed to obtain 
parameter updating during the DNN training process. Repetitive updates are required to 
enhance network accuracy in addition to a minorly augmented rate of enhancement. For 
example, the training process using ImageNet as a large dataset, which contains more 
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than 14 million images, along with ResNet as a network model, take around 30K to 40K 
repetitions to converge to a steady solution. In addition, the overall computational load, 
as an upper-level prediction, may exceed 1020 FLOPS when both the training set size 
and the DNN complexity increase.

Prior to 2008, boosting the training to a satisfactory extent was achieved by using 
GPUs. Usually, days or weeks are needed for a training session, even with GPU sup-
port. By contrast, several optimization strategies were developed to reduce the extensive 
learning time. The computational requirements are believed to increase as the DNNs 
continuously enlarge in both complexity and size.

In addition to the computational load cost, the memory bandwidth and capacity have 
a significant effect on the entire training performance, and to a lesser extent, deduction. 
More specifically, the parameters are distributed through every layer of the input data, 
there is a sizeable amount of reused data, and the computation of several network layers 
exhibits an excessive computation-to-bandwidth ratio. By contrast, there are no distrib-
uted parameters, the amount of reused data is extremely small, and the additional FC 
layers have an extremely small computation-to-bandwidth ratio. Table 3 presents a com-
parison between different aspects related to the devices. In addition, the table is estab-
lished to facilitate familiarity with the tradeoffs by obtaining the optimal approach for 
configuring a system based on either FPGA, GPU, or CPU devices. It should be noted 
that each has corresponding weaknesses and strengths; accordingly, there are no clear 
one-size-fits-all solutions.

Although GPU processing has enhanced the ability to address the computational 
challenges related to such networks, the maximum GPU (or CPU) performance is not 
achieved, and several techniques or models have turned out to be strongly linked to 
bandwidth. In the worst cases, the GPU efficiency is between 15 and 20% of the maxi-
mum theoretical performance. This issue is required to enlarge the memory bandwidth 
using high-bandwidth stacked memory. Next, different approaches based on FPGA, 
GPU, and CPU are accordingly detailed.

Table 3 A comparison between different aspects related to the devices

Feature Assessment Leader

Development CPU is the easiest to program, then GPU, then FPGA CPU

Size Both FPGA and CPU have smaller volume solutions due to their lower 
power consumption

FPGA‑CPU

Customization Broader flexibility is provided by FPGA FPGA

Ease of change Easier way to vary application functionality is provided by GPU and CPU GPU‑CPU

Backward compatibility Transferring RTL to novel FPGA requires additional work. Furthermore, GPU 
has less stable architecture than CPU

CPU

Interfaces Several varieties of interfaces can be implemented using FPGA FPGA

Processing/$ FPGA configurability assists utilization in wider acceleration space. Due to 
the considerable processing abilities, GPU wins

FPGA‑GPU

Processing/watt Customized designs can be optimized FPGA

Timing latency Implemented FPGA algorithm offers deterministic timing, which is in turn 
much faster than GPU

FPGA

Large data analysis FPGA performs well for inline processing, while CPU supports storage 
capabilities and largest memory

FPGA‑CPU

DCNN inference FPGA has lower latency and can be customized FPGA

DCNN training Greater float‑point capabilities provided by GPU GPU
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CPU‑based approach

The well-behaved performance of the CPU nodes usually assists robust network con-
nectivity, storage abilities, and large memory. Although CPU nodes are more common-
purpose than those of FPGA or GPU, they lack the ability to match them in unprocessed 
computation facilities, since this requires increased network ability and a larger memory 
capacity.

GPU‑based approach

GPUs are extremely effective for several basic DL primitives, which include greatly 
parallel-computing operations such as activation functions, matrix multiplication, and 
convolutions [326–330]. Incorporating HBM-stacked memory into the up-to-date 
GPU models significantly enhances the bandwidth. This enhancement allows numerous 
primitives to efficiently utilize all computational resources of the available GPUs. The 
improvement in GPU performance over CPU performance is usually 10-20:1 related to 
dense linear algebra operations.

Maximizing parallel processing is the base of the initial GPU programming model. For 
example, a GPU model may involve up to sixty-four computational units. There are four 
SIMD engines per each computational layer, and each SIMD has sixteen floating-point 
computation lanes. The peak performance is 25 TFLOPS (fp16) and 10 TFLOPS (fp32) 
as the percentage of the employment approaches 100%. Additional GPU performance 
may be achieved if the addition and multiply functions for vectors combine the inner 
production instructions for matching primitives related to matrix operations.

For DNN training, the GPU is usually considered to be an optimized design, while for 
inference operations, it may also offer considerable performance improvements.

FPGA‑based approach

FPGA is wildly utilized in various tasks including deep learning [199, 247, 331–334]. 
Inference accelerators are commonly implemented utilizing FPGA. The FPGA can be 
effectively configured to reduce the unnecessary or overhead functions involved in GPU 
systems. Compared to GPU, the FPGA is restricted to both weak-behaved floating-point 
performance and integer inference. The main FPGA aspect is the capability to dynami-
cally reconfigure the array characteristics (at run-time), as well as the capability to con-
figure the array by means of effective design with little or no overhead.

As mentioned earlier, the FPGA offers both performance and latency for every watt it 
gains over GPU and CPU in DL inference operations. Implementation of custom high-
performance hardware, pruned networks, and reduced arithmetic precision are three 
factors that enable the FPGA to implement DL algorithms and to achieve FPGA with 
this level of efficiency. In addition, FPGA may be employed to implement CNN over-
lay engines with over 80% efficiency, eight-bit accuracy, and over 15 TOPs peak perfor-
mance; this is used for a few conventional CNNs, as Xillinx and partners demonstrated 
recently. By contrast, pruning techniques are mostly employed in the LSTM context. The 
sizes of the models can be efficiently minimized by up to 20×, which provides an impor-
tant benefit during the implementation of the optimal solution, as MLP neural process-
ing demonstrated. A recent study in the field of implementing fixed-point precision and 
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custom floating-point has revealed that lowering the 8-bit is extremely promising; more-
over, it aids in supplying additional advancements to implementing peak performance 
FPGA related to the DNN models.

Evaluation metrics
Evaluation metrics adopted within DL tasks play a crucial role in achieving the opti-
mized classifier [335]. They are utilized within a usual data classification procedure 
through two main stages: training and testing. It is utilized to optimize the classification 
algorithm during the training stage. This means that the evaluation metric is utilized to 
discriminate and select the optimized solution, e.g., as a discriminator, which can gen-
erate an extra-accurate forecast of upcoming evaluations related to a specific classifier. 
For the time being, the evaluation metric is utilized to measure the efficiency of the cre-
ated classifier, e.g. as an evaluator, within the model testing stage using hidden data. As 
given in Eq. 20, TN and TP are defined as the number of negative and positive instances, 
respectively, which are successfully classified. In addition, FN and FP are defined as the 
number of misclassified positive and negative instances respectively. Next, some of the 
most well-known evaluation metrics are listed below. 

1. Accuracy: Calculates the ratio of correct predicted classes to the total number of 
samples evaluated (Eq. 20). 

2. Sensitivity or Recall: Utilized to calculate the fraction of positive patterns that are 
correctly classified (Eq. 21). 

3. Specificity: Utilized to calculate the fraction of negative patterns that are correctly 
classified (Eq. 22). 

4. Precision: Utilized to calculate the positive patterns that are correctly predicted by all 
predicted patterns in a positive class (Eq. 23). 

5. F1-Score: Calculates the harmonic average between recall and precision rates 
(Eq. 24). 

6. J Score: This metric is also called Youdens J statistic. Eq. 25 represents the metric. 

(20)Accuracy =
TP + TN

TP + TN + FP + FN

(21)Sensitivity =
TP

TP + FN

(22)Specificity =
TN

FP + TN

(23)Precision =
TP

TP + FP

(24)F1score = 2 ×
Precision × Recall

Precision + Recall
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7. False Positive Rate (FPR): This metric refers to the possibility of a false alarm ratio as 
calculated in Eq. 26

8. Area Under the ROC Curve: AUC is a common ranking type metric. It is utilized to 
conduct comparisons between learning algorithms [336–338], as well as to construct 
an optimal learning model [339, 340]. In contrast to probability and threshold met-
rics, the AUC value exposes the entire classifier ranking performance. The following 
formula is used to calculate the AUC value for two-class problem [341] (Eq. 27) 

 Here, Sp represents the sum of all positive ranked samples. The number of negative 
and positive samples is denoted as nn and np , respectively. Compared to the accu-
racy metrics, the AUC value was verified empirically and theoretically, making it 
very helpful for identifying an optimized solution and evaluating the classifier perfor-
mance through classification training.

 When considering the discrimination and evaluation processes, the AUC perfor-
mance was brilliant. However, for multiclass issues, the AUC computation is primar-
ily cost-effective when discriminating a large number of created solutions. In addi-
tion, the time complexity for computing the AUC is O

(

|C|2 n log n
)

 with respect to 
the Hand and Till AUC model [341] and O

(

|C| n log n
)

 according to Provost and 
Domingo’s AUC model [336].

Frameworks and datasets
Several DL frameworks and datasets have been developed in the last few years. vari-
ous frameworks and libraries have also been used in order to expedite the work with 
good results. Through their use, the training process has become easier. Table 4 lists 
the most utilized frameworks and libraries.

Based on the star ratings on Github, as well as our own background in the field, 
TensorFlow is deemed the most effective and easy to use. It has the ability to work on 
several platforms. (Github is one of the biggest software hosting sites, while Github 
stars refer to how well-regarded a project is on the site). Moreover, there are several 
other benchmark datasets employed for different DL tasks. Some of these are listed in 
Table 5.

Summary and conclusion
Finally, it is mandatory the inclusion of a brief discussion by gathering all the relevant 
data provided along this extensive research. Next, an itemized analysis is presented in 
order to conclude our review and exhibit the future directions.

(25)Jscore = Sensitivity + Specificity − 1

(26)FPR = 1 − Specificity

(27)AUC =
Sp − np(nn + 1)/2

npnn
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• DL already experiences difficulties in simultaneously modeling multi-complex 
modalities of data. In recent DL developments, another common approach is that of 
multimodal DL.

• DL requires sizeable datasets (labeled data preferred) to predict unseen data and to 
train the models. This challenge turns out to be particularly difficult when real-time 
data processing is required or when the provided datasets are limited (such as in the 

Table 5 Benchmark datasets

Dataset Num. of classes Applications Link to dataset

ImageNet 1000 Image classification, object 
localization, object detection, 
etc.

http:// www. image‑ net. org/

CIFAR10/100 10/100 Image classification https:// www. cs. toron to. edu/ ~kriz/ 
cifar. html

MNIST 10 Classification of handwritten 
digits

http:// yann. lecun. com/ exdb/ 
mnist/

Pascal VOC 20 Image classification, segmenta‑
tion, object detection

http:// host. robots. ox. ac. uk/ pascal/ 
VOC/ voc20 12/

Microsoft COCO 80 Object detection, semantic 
segmentation

https:// cocod ataset. org/# home

YFCC100M 8M Video and image understanding http:// proje cts. dfki. unikl. de/ yfcc1 
00m/

YouTube‑8M 4716 Video classification https:// resea rch. google. com/ 
youtu be8m/

UCF‑101 101 Human action detection https:// www. crcv. ucf. edu/ data/ 
UCF101. php

Kinetics 400 Human action detection https:// deepm ind. com/ resea rch/ 
open‑ source/ kinet ics

Google Open Images 350 Image classification, segmenta‑
tion, object detection

https:// stora ge. googl eapis. com/ 
openi mages/ web/ index. html

CalTech101 101 Classification http:// www. vision. calte ch. edu/ 
Image_ Datas ets/ Calte ch101/

Labeled Faces in the Wild – Face recognition http:// vis‑ www. cs. umass. edu/ lfw/

MIT‑67 scene dataset 67 Indoor scene recognition http:// web. mit. edu/ torra lba/ 
www/ indoor. htm

Table 4 List of the most common frameworks and libraries

Framework License Core language Year of release Homepages

TensorFlow Apache 2.0 C++ & Python 2015 https:// www. tenso rflow. org/

Keras MIT Python 2015 https:// keras. io/

Caffe BSD C++ 2015 http:// caffe. berke leyvi sion. org/

MatConvNet Oxford MATLAB 2014 http:// www. vlfeat. org/ matco nvnet/

MXNet Apache 2.0 C++ 2015 https:// github. com/ dmlc/ mxnet

CNTK MIT C++ 2016 https:// github. com/ Micro soft/ CNTK

Theano BSD Python 2008 http:// deepl earni ng. net/ softw are/ theano/

Torch BSD C & Lua 2002 http:// torch. ch/

DL4j Apache 2.0 Java 2014 https:// deepl earni ng4j. org/

Gluon AWS Microsoft C++ 2017 https:// github. com/ gluon‑ api/ gluon‑ api/

OpenDeep MIT Python 2017 http:// www. opend eep. org/

http://www.image-net.org/
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.cs.toronto.edu/%7ekriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://cocodataset.org/#home
http://projects.dfki.unikl.de/yfcc100m/
http://projects.dfki.unikl.de/yfcc100m/
https://research.google.com/youtube8m/
https://research.google.com/youtube8m/
https://www.crcv.ucf.edu/data/UCF101.php
https://www.crcv.ucf.edu/data/UCF101.php
https://deepmind.com/research/open-source/kinetics
https://deepmind.com/research/open-source/kinetics
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://vis-www.cs.umass.edu/lfw/
http://web.mit.edu/torralba/www/indoor.htm
http://web.mit.edu/torralba/www/indoor.htm
https://www.tensorflow.org/
https://keras.io/
http://caffe.berkeleyvision.org/
http://www.vlfeat.org/matconvnet/
https://github.com/dmlc/mxnet
https://github.com/Microsoft/CNTK
http://deeplearning.net/software/theano/
http://torch.ch/
https://deeplearning4j.org/
https://github.com/gluon-api/gluon-api/
http://www.opendeep.org/
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case of healthcare data). To alleviate this issue, TL and data augmentation have been 
researched over the last few years.

• Although ML slowly transitions to semi-supervised and unsupervised learning to 
manage practical data without the need for manual human labeling, many of the cur-
rent deep-learning models utilize supervised learning.

• The CNN performance is greatly influenced by hyper-parameter selection. Any small 
change in the hyper-parameter values will affect the general CNN performance. 
Therefore, careful parameter selection is an extremely significant issue that should be 
considered during optimization scheme development.

• Impressive and robust hardware resources like GPUs are required for effective CNN 
training. Moreover, they are also required for exploring the efficiency of using CNN 
in smart and embedded systems.

• In the CNN context, ensemble learning [342, 343] represents a prospective research 
area. The collection of different and multiple architectures will support the model 
in improving its generalizability across different image categories through extracting 
several levels of semantic image representation. Similarly, ideas such as new activa-
tion functions, dropout, and batch normalization also merit further investigation.

• The exploitation of depth and different structural adaptations is significantly 
improved in the CNN learning capacity. Substituting the traditional layer configura-
tion with blocks results in significant advances in CNN performance, as has been 
shown in the recent literature. Currently, developing novel and efficient block archi-
tectures is the main trend in new research models of CNN architectures. HRNet is 
only one example that shows there are always ways to improve the architecture.

• It is expected that cloud-based platforms will play an essential role in the future 
development of computational DL applications. Utilizing cloud computing offers 
a solution to handling the enormous amount of data. It also helps to increase effi-
ciency and reduce costs. Furthermore, it offers the flexibility to train DL architec-
tures.

• With the recent development in computational tools including a chip for neural net-
works and a mobile GPU, we will see more DL applications on mobile devices. It will 
be easier for users to use DL.

• Regarding the issue of lack of training data, It is expected that various techniques of 
transfer learning will be considered such as training the DL model on large unlabeled 
image datasets and next transferring the knowledge to train the DL model on a small 
number of labeled images for the same task.

• Last, this overview provides a starting point for the community of DL being inter-
ested in the field of DL. Furthermore, researchers would be allowed to decide the 
more suitable direction of work to be taken in order to provide more accurate alter-
natives to the field.
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