
4888 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

2D Matching Using Repetitive and Salient Features
in Architectural Images

Brittany Morago, Giang Bui, and Ye Duan

Abstract—Matching and aligning architectural imagery is an
important step for many applications but can be a difficult
task due to repetitive elements often present in buildings. Many
keypoint descriptor and matching methods will fail to produce
distinctive descriptors for each region of man-made structures,
which causes ambiguity when attempting to match areas between
images. In this paper, we outline a technique for reducing
the search space for matching by taking a two-step approach,
aligning pairs one dimension at a time and by abstracting images
that originally contain many repetitive elements into a set of
distinct, representative patches. We also present a simple, but
very effective method for computing the intra-image saliency for
a single image that allows us to directly identify unique areas in
an image without machine learning. We use this information to
find distinctive keypoint matches across image pairs. We show
that our pipeline is able to overcome many of the pitfalls encoun-
tered when using traditional keypoint and regional matching
techniques on commonly encountered images of urban scenes.

Index Terms—Keypoint matching, 2D registration, repetitive
patterns, salient features, architectural imagery, dimension
reduction.

I. INTRODUCTION

REGISTERING architectural imagery poses several
interesting challenges. Many architectural designs

include repetitive elements such as rows of windows, doors,
or balconies that all have similar appearances. If either local
or regional descriptors are extracted for different elements of
a repeating patten, they may take on near-equivalent values.
This creates ambiguity when the descriptors from a series of
images are compared. A matching algorithm being used to
find the correspondence for a window in one image may not be
able to distinguish between the descriptors of several repetitive
windows in a second image. Figure 1 shows an example
of how a common local keypoint descriptor and matching

Manuscript received December 22, 2015; revised May 25, 2016 and
July 19, 2016; accepted July 26, 2016. Date of publication August 8, 2016;
date of current version August 29, 2016. This work was supported in part
by NSF CC-NIE under Award 1245795, in part by NSF CMMI under
Award 1039433, in part by the NSF Graduate Research Fellowship under
Award 0943941, and in part by the U.S. Department of Education
under Award P200A100053. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Chang-Su Kim.
(Brittany Morago and Giang Bui equally contributed to this work and are
co-first authors.) (Corresponding author: Ye Duan.)

B. Morago is with the University of North Carolina at Wilmington,
Wilmington, NC 28403 USA (e-mail: moragob@uncw.edu).

G. Bui and Y. Duan are with the University of Missouri, Columbia,
MO 65203 USA (e-mail: gdb338@mail.missouri.edu; duanye@missouri.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
additional results. The total size of the videos is 9.33 MB. Contact
duanye@missouri.edu for further questions about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2598612

Fig. 1. Challenge of matching images containing repetitive features.
(a.) Original image pair. (b.) SIFT keypoint matches on rectified images. Close
inspection shows that the majority of the matches are incorrect and keypoints
in the left image are matched to similar looking repetitive areas in the right
image. We do not have enough correct SIFT matches for RANSAC to find
a correct transformation. (c.) Keypoint matches after applying our proposed
pipeline for handling repetition. (d.) Image pair aligned and overlaid using
our pipeline.

technique, SIFT [1], cannot distinguish between different areas
of a building that look nearly identical.

We hypothesize that by using specific urban imagery-
based criteria to reduce the search space during matching,
we can bypass the difficulties encountered when matching

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

MORAGO et al.: 2D MATCHING USING REPETITIVE AND SALIENT FEATURES IN ARCHITECTURAL IMAGES 4889

Fig. 2. Pipeline of our proposed registration method. Our method has two main stages: vertical alignment and horizontal alignment. For vertical alignment,
we perform dimension reduction, identify representative patches for each image, and use the matching representatives to compute a 1D transformation that
transforms the images to the same scale and aligns the pair along the vertical axis. For horizontal alignment, we compute the intra-image saliency and search
for strong, salient matches along corresponding rows between images to vote for the correct displacement between the pair.

ambiguous data. We have observed that regardless of the
height of a building, architectural repetition often occurs at
least in the horizontal direction, if not also in the vertical
direction [2]. Since we are focused on images of man-made
structures that frequently have easy to identify vanishing lines,
we rectify all images to be front facing [3], [4] so that
horizontal repetitive elements have the same y-coordinate.
Once images are in this front-facing format, we propose align-
ing images one dimension at a time following the idea that
considering subsets of larger dimensional data independently
can make an ambiguous global problem simpler to solve [5].
We first collapse each image along the vertical axis and
use the y-coordinates of matching features to vertically align
the image pairs. Once we know the relative scale and row
alignment across images, we expand the data back out along
the x-axis and compute the horizontal alignment.

To perform dimension reduction to compute a vertical align-
ment, we create an abstraction of each image by identifying the
repetitive elements along the horizontal axis and choosing just
one element to represent each group of repeated features and
combine these with any found unique features. By choosing
one representative patch for each row of repeated horizontal
elements as well as identifying salient patches that do not
repeat across the image, we can abstract an image into a
vertical column of distinct regions and remove a substantial
amount of potential repetition in the feature space. We match
these representative regions across images to compute a pair’s
row-to-row correspondence.

This simplifies the second alignment stage since our only
remaining unknown is the displacement along the horizontal
axis. At this stage, we have a reduced search space to find
distinctive matches that can be used to align repetitive facades.
For a match to be distinctive, the matching regions must be
unique within their own images. Using our assumption that
the data can be rectified to be front-facing and vertically
aligned, we propose a simple, but very-effective technique
for computing the intra-image saliency1 along the rows of
urban images. We use this information to gauge the quality
of keypoint matches. We are able perform this computation
directly on the images being matched without relying on the
existence of a large database of similar images and the use of
learning techniques to determine the uniqueness of keypoints
being matched. Our pipeline is outlined in Figure 2.

II. LITERATURE REVIEW

Several groups have developed techniques to use differ-
ent types of structural and high-level information to guide

1We use the term saliency to refer to image regions that do not look like
any other regions within the image.

image matching. The goals of these methods are generally
to overcome pitfalls of locally or even regionally defined
descriptors [1], [6]–[10] that are ambiguous in the presence
of repetitive features. While locally defined descriptors can
provide very accurate information that is invariant to scale
changes and scene clutter, in certain cases they do not
take into account large enough image regions to be truly
distinct [11].

To make matching images with repetitive architectural pat-
terns a more tangible task, researchers have explored using
larger-scale properties such as feature symmetry [12], [13]
and repetition to identify corresponding regions [14].
Hauagge and Snavely [15] search for horizontal, vertical, and
rotational symmetries about various axes and scales across
images. Self-similarities can be identified in patterns of col-
ors, edges, and repeated visual elements by measuring how
similar a small region is to parts of the larger surrounding
region [16]. Wu et al. [2] match SIFT features within an image
to identify repeating and symmetrical elements that occur
at regular intervals and the boundaries between repetitions.
Kushnir and Shimshoni [17] also match SIFT features across
images to find repeating elements and use agglomerative
clustering to group similar regions. This group presents two
versions of their matching algorithm. Similar to [2], one
version focuses on images where grids of periodic elements
can be identified. The other handles cases where repetition
exists in a less predictable fashion. Matches between non-
repetitive features are identified and used to solve a trans-
formation between an image pair. Chung et al. [18] use graph
matching to globally align images of buildings that capture
the same portion of a structure’s facades. This work identifies
repetitive MSER patches and constructs a semantic sketch
of a building to match between highly varying viewpoints.
Bansal et al. [19] also work to align images of buildings
taken from highly different viewpoints such as aerial to ground
level. Aligning images of high-rise buildings that have many
repetitive elements and appearance differences due to view
changes poses difficulties. They construct an embedding of a
facade that captures how similar or dissimilar image regions
are to their neighbors. This group uses the periodicity of
a repeating element as an estimate of the scale of interest.
This group’s contribution of a “scale-selective self-similarity”
can be extracted from any pixel in the image bypassing
the need for a repeatable detector. PatchMatch [20], [21]
provides a framework for matching patches across images by
randomly assigning and searching for correspondences. This
method uses a combination of searching through different
scales, random sampling, and distance propagation to guide
the matching process using a cooperative hill climbing strategy

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

4890 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

to find a patch’s set of nearest neighbors. Ceylan et al. [14]
construct grids of repetitive elements within images and limit
an aligning transformation to be one of a discrete set of
possible solutions that overlay different images’ grids.

A different perspective for matching data that has repetitive
elements is to find the salient regions in images and use
these areas to guide registration. Machine learning techniques
have been used to identify these types of unique regions in
photographs, paintings, and 3D models [22]–[24]. These mid-
level discriminative features ideally occur often enough across
a dataset to be learned, but are different enough from the
rest of the imagery to be clearly located in photographs and
models with visual dissimilarities. Training a system to learn
these features tends to be time consuming and computationally
intensive. In this paper, we share a similar spirit of finding
salient regions. However, unlike existing work that requires
supervised training, our proposed salient region detection
method is applied directly to and only on the images being
matched and is unsupervised.

III. CONTRIBUTIONS

Our main contributions to the area of architectural imagery
registration include methods for:

1) aligning rectified images one dimension at a time, reduc-
ing the search space and increasing the image matching
robustness,

2) computing intra-image saliency maps in an unsupervised
manner with no training set, and

3) directly accounting for image region saliency when
quantifying keypoint match quality.

Our pipeline is designed to overcome several of the
limitations and assumptions made in the work described
in Section II. We use a technique for identifying repetitive
patterns in images regardless of the spatial distribution
of similar elements and we are able to match images
of repetitive facades that only partially overlap. We also
remove the ambiguity in the feature space that is common
in architectural imagery by collapsing repetitive elements
into single representative patches. Finally, instead of only
using either repetitive or salient features for matching, we
take advantage of all the information available in images,
and incorporate both types of features in our registration
pipeline.

IV. TWO-STEP APPROACH

The main steps of our registration methodology are iden-
tifying both repetitive and salient elements within images,
using this information to first align image pairs vertically, and
finally computing a horizontal alignment using a dramatically
reduced and unambiguous search space. The first step of this
process is solving for a 1D affine transformation that encodes
the relative scale change and vertical shift between images
and matches rows to rows as shown in Figure 12c. The
second step is determining a second 1D transformation that
represents the horizontal translation overlaying the image pair.
Equation 1 shows the forms of these vertical and horizontal
transformations (Tv and Th) where s is the scale change, dy is

the displacement along the y-axis, and dx is the displacement
along the x-axis.

Tv =
[

s dy

0 1

]
Th =

[
s dx

0 1

]
. (1)

A. Vertical Alignment

We begin by performing dimension reduction and selecting
one representative patch of each type of region in an image so
that all the chosen representative patches are distinctive. This
entails identifying portions of an image that are duplicates
of each other and represent a repeating pattern as well as
image portions that are truly unique. We use a combination
of local and regional descriptors to accomplish this. Doing so
helps overcome some of the inherit ambiguity of very-locally
defined descriptors [10], [11] and increases our confidence
as we categorize regions. Incorporating regional descriptors
at varying scales also allows us to explore how different
image regions may switch between repetitive and salient as
the considered area changes.

To initially identify repetitive elements, we extract Psuedo
Corners [10] which are sparse, repeatable local keypoints
that are found at the intersection of line segments. Our
design choice of using Pseudo Corners as anchor points for
finding repetition and matching images is discussed further
in Section V-B3. We extract multi-scale patches centered
at each anchor keypoint and use local SIFT and regional
HOG descriptors [10] to group repetitive elements that are
centered on the same image row. For each group, we use the
element that is most similar to the group’s mean patch as the
representative patch. Figure 3 provides a visual example of
how we identify repetitive elements in an image and choose a
group’s representative patch. We use the y-coordinate of these
representative patches to solve for Tv .

When we match just the representative patches of groups
(that may have either one or multiple elements), we can focus
on matching unique areas without worrying about horizontal
ambiguity. To actually match representative patches, we again
use the SIFT descriptor at the center point of each patch
and the HOG descriptor of the entire representative region.
For each representative patch in I1, we compare its SIFT
descriptor to all of the representative patches in I2. If the
patch in I2 with the most similar SIFT descriptor to the patch
in I1 also has Euclidean distances between the center points’
SIFT descriptors and the patches’ HOG descriptors below a
threshold (we use 0.5), we label this as a group match. We
consider all of the representative patches in I1 and I2 that
were constructed at different scales in one round of matching.
Figures 3 and 12b show examples of matching groups between
an image pair.

Using RANSAC [25], we randomly choose sets of two
matching representative patches between the image pair to
compute a series of potential Tv ’s. For each Tv , we check how
many other representative patch matches have a symmetric
transfer error [3] lower than 0.5∗winSi ze1 and choose the Tv

with the largest support. We then re-estimate Tv using this set
of inliers.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

MORAGO et al.: 2D MATCHING USING REPETITIVE AND SALIENT FEATURES IN ARCHITECTURAL IMAGES 4891

Fig. 3. Identifying groups of repetitive elements and matching groups.
(a.) Similar patches are identified along a row of an image. Teal boxes
surrounding a larger dot show the matching anchor keypoints. Yellow boxes
surrounding a smaller dot show the dense features that were matched to
the anchor keypoint for the row. For this example, we use Pseudo Corners
as anchor keypoints as is discussed in Section V-B3. (b.) The chosen
representative patch of the group. This patch is most similar to the average of
all the elements contained in the group. Note that sometimes in architectural
designs, the repetitive elements may not occur at regular intervals as shown
in this example. Our method is designed to search for repetition regardless of
the regularity or irregularity of the interval. (c.) Subset of the corresponding
groups after computing a 1D transformation are highlighted in matching
colors. Every element of the groups are displayed.

B. Horizontal Alignment

Since we are working with data containing repetition,
especially images with patterns along the horizontal direction,
we need to identify matching areas where we can be sure
the correspondences are non-ambiguous to compute dx . This
is especially important because we do not require that our
image pairs contain completely overlapping facades, so we
can not rely on the relative arrangement of repetitive elements
to determine the horizontal alignment. Figure 4 shows an
example of the problem of relying on the relative arrangements
of repetitive elements to align images. Our goal is to find
matching pixels (p1 in I1 and p2 in I2) that satisfy the
following criteria:

1) p1 and p2 have very similar HOG descriptors
2) p1’s closest match within I1 (q1) is very dissimilar to p1
3) p2’s closest match within I2 (q2) is very dissimilar to p2

These conditions help us ensure that we find matching
pairs of pixels that are both very similar to each other, but
are distinct within their respective images, making the match
distinct. We have two steps for identifying salient matches.

Fig. 4. Motivation for searching for salient matches for horizontally aligning
images. The highlighted image patches in the above image pair shows a
set of matching repetitive elements. If we choose the horizontal alignment
that maximizes the number of overlapping elements, we will have the wrong
image pair transformation in situations like this where the images do not fully
overlap. The highlighted patches are colored according to which patches will
match if we try to maximize the number of overlapping patches. This is why
we use our reduced search space (after vertical alignment) to identify distinct
areas and salient matches to choose potential horizontal alignments.

The first is to compute an intra-image saliency map to identify
distinct areas in a single image. The second step uses this
information to compute the pairwise saliency of each match.

1) Intra-Image Saliency Maps: The goal of our intra-image
saliency maps is to display how salient each pixel and its
surrounding region in an image are compared to other regions
in the image. Since at this point in our pipeline, for a given
pixel in I1, we are only looking for its match on a single row
in I2, we are only concerned with how similar each region is
to all other regions centered on the same row. This reduces our
intra-saliency computation by requiring that we only compare
each region only to the other non-adjacent regions on the same
image row. We consider regions whose HOG windows do not
overlap to be non-adjacent. Equation 2 shows how we compute
each pixel’s saliency. We use spi to denote the saliency of a
pixel, pi , and its surrounding patch. qi is the pixel on the same
row as pi whose surrounding HOG patch has the lowest L2

distance to the HOG patch surrounding pi and is not adjacent
to pi . i denotes the image index.

spi = arg minqi
‖H OG(pi) − H OG(qi)‖ (2)

Using this equation, we gauge the saliency of each pixel
and its surrounding region by the distance between its
HOG descriptor and its closest match on the same row.
Figures 5b and 12d show visualizations of the range of intra-
image saliency values found in each image. We compute the
saliency at multiple scales or HOG window sizes as shown in
Figure 12d to consider the saliency of different image region
sizes. The ranges shown in these figures are colored with a
standard jet colormap where the minimum values in the image
are assigned a blue color, the maximum values are assigned
a deep red, and the values in between interpolate through
blue, green, yellow, and red. The specific colors chosen for
visualizing the range of values are arbitrary. We use them as
a tool to easily study the numeric values of how salient each
region in the image is. We can see in these examples how the
more distinctive features and objects that are only seen once
in an image stand out from the repetitive elements.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

4892 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

Fig. 5. Visualization of match saliency equation. (a.) Original images being
matched. (b.) Intra-image saliency map of each image. More salient areas
appear in red and more repetitive areas appear in blue. (c.) Color fields of
match saliency scores shown from the perspective of both images. (d.) Result
after applying Otsu thresholding. All keypoint matches that are contained
within the remaining colored regions are used to vote for a hortizontal
alignment. The final aligned result using these matches is shown in Figure 1.

2) Pairwise Match Saliency: Once we know how salient
each pixel is within its own image, we can use this information
to gauge how confident we are in the saliency of keypoint
matches found between the image pair. We define this
value, ms , in Equation 3. H OG(p1) is the HOG descriptor
of a pixel, p1, in I1. We compare p1 to the HOG descriptors
of all pixels lying on its corresponding horizontal line in I2.
H OG(p2) is the HOG descriptor surrounding a pixel on
this line that is most similar to H OG(p1). We enforce a
bi-directional constraint on the matches here, meaning that
p2 is the best match for p1 in I2 and p1 is the best match
for p2 in I1. ε is a very small value to ensure both that ms

does not go to infinity and that a perfect match that is also
repetitive does not have a high saliency score.

ms = 1 − ‖H OG(p1) − H OG(p2)‖ + ε

‖sp1 + sp2‖ + ε
(3)

If either p1 or p2 are elements of a repetitive pattern within
I1 or I2, we cannot be confident that p1 and p2 are a unique

and correct match. For this reason, we use the intra-image
saliency scores sp1 and sp2 of both p1 and p2 respectively.
We are confident in keypoint matches with high ms values
since this indicates that the matching pixels have similar
descriptors and that they are both distinct within their respec-
tive images, leaving little room for ambiguity in the pair match.

To distinguish the pixel matches that we are confident in
from the ones that are either poor matches or ambiguous, we
create an image visualizing the range of ms values in the
same manner we used to visualize the intra-image saliency
values. The color map of ms values for different image pairs
are shown in as shown in Figures 5c and 12e. We apply
Otsu thresholding [26] to identify the “foreground” pixels in
this image, or those whose saliency values stand out from
the rest of the image. Figures 5d and 12f show the saliency
match fields we are left with after applying this thresholding.
We choose to use Otsu thresholding since it is an automatic
method that is adaptable to different types of images and does
not require that we set one threshold value for all datasets.

We use the pixel matches remaining in the pairwise saliency
maps after thresholding to vote for Th , with each match voting
for a potential dx value. Each match’s vote is weighted by it’s
ms score so that the most salient matches have a stronger voice
in choosing the horizontal alignment.

We can encounter a potential obstacle during the hori-
zontal shift voting stage if the scene in the image actually
contains multiple planes that cannot be represented by a
single transformation. For instance, as shown in Figure 12h.,
if an object, such as a tree, is in front of the main building
being photographed, one transformation might align the two
views of the tree captured between images, while a second
transformation will align the building of interest. Since,
in general, foreground items like this also tend to be salient,
we may get a large number of pixel matches voting for the
shift to align the salient foreground as well as a strong support
for aligning the salient features on the more repetitive building
facades.

To handle this scenario, we consider several different poten-
tial dx values. We have observed that the horizontal shift
that aligns the salient foreground object does not also align
the repetitive elements on the facade of interest, except by
coincidence. Using this observation, if multiple dx values
have strong support, we choose the one that best aligns the
repetitive facades in the images. We have already identified
the image regions showing building facades when we extracted
and matched groups of repetitive elements in Section IV-A.

To decide how many dx values have strong support, we
consider all shifts that have at least 50% of the number of
votes as the shift with the most votes. We use each of these
shifts to project all the members from the repetitive groups
extracted at the beginning of our pipeline in I1 to I2 and vice
versa. For all of the members that are projected within the
matching image’s plane, we maintain a counter. The counter
is incremented every time a repetitive element is projected onto
the location of a member of its matching group. If there is no
matching group member at an element’s projected location,
the counter is decremented. After projecting all the group
members between images, we divide the counter value by the

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

MORAGO et al.: 2D MATCHING USING REPETITIVE AND SALIENT FEATURES IN ARCHITECTURAL IMAGES 4893

number of group members that were projected within their
matching image’s boundaries. We choose the horizontal shift
which has the largest counter score. An example of using this
criteria to choose the horizontal shift that best aligns a building
facade with salient objects in front of it is shown in Figure 12h.

3) Full 8 Degree of Freedom Transformation and
Refinement: At this point we have two 1D transformations
that can be merged into one 3x3 homography that encodes the
scale change between the image pair and the translations along
the x and y axes. If both images have been perfectly rectified,
this is all the information we need to align them. However,
since we are working with real-world data and applying an
automatic rectification algorithm to large sets of images, there
is naturally still some warping and distortion in the rectified
results. To handle these effects, we can switch to a traditional
8 degree of freedom (DOF) homography at the end of our
pipeline, using the original two 1D transformations as an initial
alignment estimate. We refine our transformation [10] using
the iterative closest point algorithm [27], switching to a full
homography in the process.

V. EVALUATION AND DISCUSSION

A. Experimental Setup

We have evaluated our pipeline on the ZuBuD building
dataset [28] and two datasets containing symmetrical elements
in urban scenes [14], [15] which we will refer to as the
SymFeat dataset and the SymUrban dataset respectively. All
of these datasets consist of a number of photographs of build-
ings under changing photographic conditions. In the ZuBuD
dataset, there are five images of each building with each image
varying in some aspect such as perspective, scale, or rotation.
We used the software provided by [4] to rectify the images
in the ZuBuD and SymUrban datasets. The majority of the
images in the SymFeat dataset are already rectified and front
facing. For the ZuBuD dataset, using the images that were
automatically rectified correctly, we have 716 pairs of images
for testing. The SymUrban dataset consists of 9 image sets,
each focused on a single building. There are around 30 photos
of each view. From the subset of images that were correctly
rectified, we chose about 50 image pairs that represented all
of the view changes presented by the dataset. We use selected
images with the image pairs in the SymFeat dataset that had
reliable ground truth information to test our method to see if
we can overcome some of the common challenges of aligning
urban images. We ran SIFT, the contextual regional matching
method described in [10] on all these datasets. We chose
these methods for comparison because both have been shown
to be robust under changes in photographic conditions, but
due to their relatively local nature (compared to using some
sort of grouping and image abstraction), can be confused
by repetition ambiguity in images. We also compare our
method to the symmetrical feature-based methods described
in [15] to look at other approaches specifically designed for
urban imagery. A list of the names and thumbnails of the
SymFeat and SymUrban images we used as well as the
especially challenging images from the ZuBuD dataset are
provided in the Supplementary Material. To obtain ground

Fig. 6. Accuracy measures for aligning images vertically, which is the first
stage of our two-step pipeline. We show the results on our three datasets
of using the traditional SIFT method, only the y-coordinates of the SIFT
matches (1D SIFT), and using our proposed method for vertical alignment
(1D Grouping).

Fig. 7. Accuracy measures for aligning images both vertically and hori-
zontally. We show the results on our three datasets of using the traditional
SIFT method, using SIFT matches to align the images first vertically,
then horizontally (SIFT Two-Step), our proposed method for vertical then
horizontal alignment (Grouping Two-Step), and our full pipeline.

truth for the ZuBuD and SymUrban images, we manually
selected a set of four matching points between image pairs
to compute an aligning homography. We use these ground
truth homographies to quantitatively evaluate our results in
Figures 6-10 and Table I.

B. Results

We ran a variety of tests to evaluate both different design
choices in our pipeline and how they build on each other as
well as the overall effectiveness of our proposed methodology.
Our first set of tests looks at the contribution of breaking
down the transformation estimation into two steps, focusing
on aligning one dimension at a time. We next look at how
matching accuracy increases as we progress through the steps
of our pipeline, adding in the intra-image saliency and pair-
wise match saliency computations to the two-step framework.
Included in our results is also an investigation of how the type
of anchor point used for vertical matching impacts our results.

For all of our alignment accuracy tests, we compute a
transformation matrix for each tested method. We translate

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

4894 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

Fig. 8. Accuracy measures for fully aligning images using our complete pipeline compared to state-of-the-art methods. We show the results on our three
datasets of using our proposed method (Repetition), our proposed method with refinement (Refined), the traditional SIFT method, the contextual method
described in [10], the two vartions of the symmetry-based features method described in [15].

Fig. 9. Precision measurements of matches found in the keypoint matching
methods tested and shown in Figure 9. We show the results on our three
datasets of using our proposed method (Repetition), the traditional SIFT
method, and the contextual method described in [10].

Fig. 10. The number of matches found with the keypoint matching methods
tested and shown in Figures 9 and 8.

every pixel in I1 to I2 using both the ground truth homography
and the test transformation. We compute the percentage of
pixels that are transformed to the same coordinate. To allow
for rounding errors and small inaccuracies in the ground
truth data, we set a threshold on what the 2D distance
between projected pixels can be to label a pixel as hav-
ing been transformed correctly. This threshold is 0.6% of
max(imagewidth, imageheight) which is the same threshold
used on 2D symmetrical transfer errors for identifying inliers
in [29].

TABLE I

REPEATABILITY COMPARISON ON ZuBuD DATASET

After running these tests on the full datasets, we take the
average values and report them in Figures 6-10 to provide
an overview of the trends in the results. The Supplementary
Material contains more detailed results and shows the evalua-
tion for individual image pairs. In the Supplementary Material,
since it would be unintuitive to show quantitative results for
the over 700 image pairs from the ZuBuD dataset, we focus
on about 50 image pairs that were identified as especially
challenging because of the amount of architectural repetition
present in these specific scenes. These images pose a number
of problems for state-of-the-art techniques and we show how
our pipeline can overcome these challenges. In the following
tables, however, since we are showing average scores for each
method on each dataset, we have included the results for the
full ZuBuD dataset. The additional 650+ images included
from the ZuBuD results in the main paper do not necessarily
contain repetition or any specific challenges for the state-of-
the-art methods. Many of the buildings in these additional
images have different types of features such as curved walls
and domes that prevent the full building facades from being
correctly rectified. Many of these images also do not require or
fit the repetition identification and two-step alignment methods
described in this and other repetition identification papers.
Therefore, we encourage the reader to also study the results in
the Supplementary Material that focus on the types of images
this work is intended to benefit.

1) Two-Step and Saliency Computation Evaluation: We
begin by performing tests to study the usefulness of our
proposed two-step method for image alignment. We show that
by aligning a single dimension first, instead of registering the
full coordinate systems of an image pair, we can achieve
a higher accuracy along that dimension. First, we aligned
the test data using traditional SIFT matches with the 8-point
algorithm [3] and RANSAC [25] to compute a full 8 degree
of freedom homography. We then check the 1D error of the
matches along the y-axis. Then we use the y-coordinates of
the SIFT matches to compute a 1D alignment (as shown
in Equation 1) and again check the error along the y-axis.
Our third test is to check the accuracy along the y-axis of

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

MORAGO et al.: 2D MATCHING USING REPETITIVE AND SALIENT FEATURES IN ARCHITECTURAL IMAGES 4895

the 1D transformation computed using the grouping method
described in this paper. Fig. 6 shows the results of these tests
on our three datasets. Both of the 1D alignments generally
yielded better results than the traditional 8 DOF computation
across the test data. The benefit of our grouping method over
both of the SIFT-based tests is seen especially on image pairs
that have large scale, rendering, or lighting changes such as
those encountered in the ZuBuD and SymFeat datasets.

Next, we look at what happens when we get to the second
stage of the two-step approach. Fig. 7 shows results after
using the SIFT-based and grouping-based techniques described
above in combination with different methods for determining
the horizontal alignment. We first align the images vertically
(using SIFT features or grouping features) and then match
SIFT features only along corresponding rows. In both tests,
distinctive SIFT matches are used to vote for a horizontal
alignment. We can see that this minimal version of the two-
step approach tends to outperform the traditional technique of
solving a full 8 DOF matrix on challenging, repetitive images.
We also show the results of using our full pipeline, consisting
of the two-step approach in combination with the intra-
image saliency and pairwise match saliency computations. The
general trend is that the basic two-step approach outperforms
traditional SIFT matching and our full pipeline outperforms
the basic two-step approach, showing the strength of our full
pipeline. These results are shown in Fig. 7.

2) Overall Pipeline Evaluation: To further test the overall
effectiveness of our full pipeline, we compute transformations
for aligning the test image pairs using our pipeline, SIFT key-
point matches, contextual keypoint matches using the method
discussed in [10], and symmetry-based features as described
in [15]. Following the symmetry-based features paper [15], we
tried matching the images using only symmetry descriptors
and symmetry and SIFT descriptors concatenated. The
alignment accuracies for these methods are shown in Figure 8
Top. We also look at the accuracy of the keypoint matches
obtained with each of the first three test methods, the number
of matches obtained with each method, and the percentage of
these keypoint matches that are correct. Figure 10 shows the
number of matches we obtain for each method and Figure 9
shows the precision of these matches. We can see from all of
these results that our proposed pipeline tends to outperform
the comparison methods. We do have several cases where the
refined result has a significantly higher accuracy than the pre-
refined result. Often times in these cases, the rectified images
still have a small amount of warping which is not captured in
our 1D homographies. It takes the full 8 DOF transformation
to model these distortions. Given the fact that our horizontal
alignment stage takes into account dense matches in salient
regions of the image pairs, as we saw in Figures 5 and 12,
our pipeline also tends to have a dramatically higher number
of keypoint matches in the end than our comparison methods.
Despite the high number of matches we consider, they are
comparably more precise to matches from other methods.

We show several visual examples of the result of our
pipeline for qualitative evaluation in Figure 11. The images
shown here are a sampling of the different types of data we
handle. These image pairs have varying ratios of salient and

TABLE II

Average Runtimes in Seconds AND Number of Features FOR STAGES

OF OUR PIPELINE ON ZuBuD DATASET

repetitive regions. Several of the pairs also have changes in
rendering style, time captured, scale, and lighting, all image
characteristics that are known to cause challenges for many
traditional keypoint matching methods [7]. Our method is
able to handle many of these problems on top of the issues
presented by repetitive data.

3) Anchor Keypoint Evaluation: To identify repetitive
and salient regions for initial matching, as was discussed
in Section IV-A, we need anchor keypoints to use for searching
for and comparing regions throughout an image. There are a
number of feature extraction methods that can be used for this
purpose such as SIFT or Harris-Laplacian corners. Since most
architectural images have abundant linear features that capture
a great deal of a building’s structure, we take advantage
of this information to find anchor keypoints. We intersect
line segments extracted from these images to estimate corner
locations, which we refer to as Pseudo Corner keypoints [10].

To test the usefulness of Pseudo Corners in our pipeline,
we computed its repeatability scores on the images we used
for evaluation from the ZuBuD dataset. We compared the
repeatability of our Pseudo Corners to that of SIFT and Harris-
Laplacian. These values are provided in Table I which shows
that our Pseudo Corner detector tends to out perform SIFT
and Harris-Laplacian on our test images. Given that Pseudo
Corners are based on line segments, it is very well-suited for
architectural imagery. Since it tends to be more repeatable on
this type of data, we chose to incorporate it in our work to
help increase the chances of extracting groups for matching
that will exist in both images. However, depending on the
type of data being used and the designers’ preferences, other
feature detector may be used in its place with the rest of our
pipeline being run exactly the same. To demonstrate this, we
also tested out our pipeline on the ZuBuD dataset using SIFT
features as the anchor keypoints for grouping. The result of
doing so is shown in Figure 7 with the labels “Repetition
SIFT” and “Refined SIFT” in the Supplementary Material.

4) Runtime: Table II shows the average runtime of our
pipeline on the tested ZuBuD images. These images were
matched on an Acer Laptop with 6 GB of memory and a
2.2 GHz Intel Core i7 Processor running Ubuntu 12.04.

5) Limitations and Future Work: One of the main bottle
necks of our pipeline is the requirement that the image

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

4896 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

Fig. 11. Visual alignment results. The original image pair is shown above each of the checkerboard views of the aligned result. These image pairs poses a
variety of challenges to matching in addition to being repetitive such as different rendering styles, time changes, partial facade overlap, scale changes, and
lighting changes. Image pairs shown are from datasets provided by [14], [15], and [28].

be rectified. While this is an acceptable assumption for urban
images, we cannot guarantee that the method we use will
also be able to perfectly rectify each image. Other repetition
matching pipelines use an initial estimation of the repetition to

refine rectification [2], [17]. We can apply a similar approach
to our work. We also assume that the images do not have
severe radial distortion. Images that do have this type of
distortion may not be rectified correctly. A radial undistortion

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

MORAGO et al.: 2D MATCHING USING REPETITIVE AND SALIENT FEATURES IN ARCHITECTURAL IMAGES 4897

Fig. 12. Alignment of images containing multiple planes. (a.) Original images, before and after rectification, that are being matched. (b.) Subset of the
corresponding repetitive groups after computing a 1D transformation (Section IV-A) are highlighted in matching colors. Every element of the groups is
displayed. (c.) Images shown after they have been vertically aligned. Note that they now have the same scale and matching rows are aligned with each other.
(d.) Intra-image saliency map of each image. The four color fields for each image show the inner-image saliency computed at different scales. The scale
increases from left to right for each image. More salient areas appear in red and more repetitive areas appear in blue. (e.) Color fields of match saliency scores
shown from the perspective of both images. Again, the color fields are shown at four different scales for each image, increasing from left to right. (f.) Result
after applying Otsu thresholding to match saliency score images. All keypoint matches that are contained within the remaining colored regions are used to
vote for a hortizontal alignment. (g.) Displacement maps. Each match visualized in (f.) votes for an alignment. The range of these shifts is scaled from [0-1]
and displayed as a color map. By doing this, we can see that at each of the four levels, two different displacements have strong support. (h.) Result of aligning
the image pair using the two different horizontal displacements chosen in (e.) The left result aligns the salient tree that is in front of (and on a different plane
than) the building of interest. The right result uses the salient matches on the building facade to correctly align the region of interest. Our selection criteria
chooses the alignment on the right side as the one that best aligns the repetitive elements, and the thus, the building facade.

step could be applied in this case [3]. The effect that radial
distortion has on our evaluation is discussed in greater detail
in the Supplementary Material.

This pipeline can easily be expanded to handle images in
which multiple buildings of a facade are visible. Multiple
rectified versions of a photograph that are each arranged to

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

4898 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

have a different building plane be front facing can be matched
to a query image. We can also alternate between collapsing
an image along the horizontal direction to collapsing it along
the vertical direction and computing a 1D horizontal trans-
formation first. This may be a good option for data of high-
rise buildings if the majority of repetitive features lay along
columns instead of rows.

VI. CONCLUSION

We have presented a method for registering images of archi-
tecture that contain repetitive features that have a tendency
to create ambiguity for general keypoint matching method-
ologies. In contrast to several state-of-the-art approaches to
registering urban data, our method does not try to fit an
evenly-spaced grid to repetitive elements [2], considers both
salient and repetitive regions simultaneously [17], and does
not require that the same portion of a building’s facade be
captured in different images [18]. Our method takes a two-
step approach to align images one dimension at a time to
reduce the search space during each matching stage. We have
discussed how we perform a dimension reduction amongst
unorganized repetitive features to further remove ambiguity
from the search space when matching regions across images.
We have also proposed equations for determining the saliency
of matching regions between an image pair without requiring
machine learning techniques to learn what elements are salient
on a large dataset [24]. We believe that by developing a
pipeline without these constraints, our method is more robust
than many other proposed registration approaches, allowing us
to align challenging, ambiguous architectural photographs in
a more general manner.

ACKNOWLEDGMENT

The authors would like to thank the reviewers of this paper
for all of their helpful comments and suggestions. They are
grateful to the researchers who provided the public datasets in
[14], [15], and [29] and code [15] that we used for testing and
evaluating the work in this paper as well as the engineers and
researchers who designed and implemented the OpenCV [30]
and VLFeat [31] libraries and image rectification software [4]
which were incorporated into this work.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[2] C. Wu, J.-M. Frahm, and M. Pollefeys, “Detecting large repetitive
structures with salient boundaries,” in Proc. 11th Eur. Conf. Comput.
Vis., 2010, pp. 142–155.

[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[4] J. Lezama, R. G. von Gioi, G. Randall, and J.-M. Morel, “Find-
ing vanishing points via point alignments in image primal and dual
domains,” in Proc. IEEE Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 509–515.

[5] K. Wilson and N. Snavely, “Robust global translations with 1DSfM,” in
Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 61–75.

[6] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Distinguished
regions for wide-baseline stereo,” Center for Machine Percep-
tion, K333 FEE Czech Tech. Univ., Prague, Tech. Rep. CTU-
CMP-2001-33, Nov. 2001, [Online]. Available: ftp://cmp.felk.cvut.cz/
pub/cmp/articles/matas/matas-tr-2001-33.ps.gz

[7] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest
point detectors,” Int. J. Comput. Vis., vol. 60, no. 1, pp. 63–86,
2004.

[8] K. Mikolajczyk et al., “A comparison of affine region detectors,” Int.
J. Comput. Vis., vol. 65, no. 1, pp. 43–72, 2005.

[9] J.-M. Morel and G. Yu, “ASIFT: A new framework for fully affine invari-
ant image comparison,” SIAM J. Imag. Sci., vol. 2, no. 2, pp. 438–469,
2009.

[10] B. Morago, G. Bui, and Y. Duan, “An ensemble approach to image
matching using contextual features,” IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 4474–4487, Nov. 2015.

[11] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detec-
tors: A survey,” Found. Trends Comput. Graph. Vis., vol. 3, no. 3,
pp. 177–280, Jan. 2008.

[12] M. Park, S. Lee, P.-C. Chen, S. Kashyap, A. A. Butt, and Y. Liu,
“Performance evaluation of state-of-the-art discrete symmetry detec-
tion algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[13] G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, and F. Dellaert,
“Detecting and matching repeated patterns for automatic geo-tagging
in urban environments,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2008, pp. 1–7.

[14] D. Ceylan, N. J. Mitra, Y. Zheng, and M. Pauly, “Coupled structure-
from-motion and 3D symmetry detection for urban facades,” ACM Trans.
Graph., vol. 33, no. 1, 2014, Art. no. 2.

[15] D. C. Hauagge and N. Snavely, “Image matching using local symmetry
features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 206–213.

[16] E. Shechtman and M. Irani, “Matching local self-similarities across
images and videos,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2007, pp. 1–8.

[17] M. Kushnir and I. Shimshoni, “Epipolar geometry estimation for urban
scenes with repetitive structures,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 12, pp. 2381–2395, Dec. 2014.

[18] Y.-C. Chung, T. X. Han, and Z. He, “Building recognition using
sketch-based representations and spectral graph matching,” in
Proc. IEEE 12th Int. Conf. Comput. Vis., Sep./Oct. 2009,
pp. 2014–2020.

[19] M. Bansal, K. Daniilidis, and H. Sawhney, “Ultra-wide baseline facade
matching for geo-localization,” in Proc. Eur. Conf. Comput. Vis.
Workshops Demonstrations, 2012, pp. 175–186.

[20] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “PatchMatch:
A randomized correspondence algorithm for structural image editing,”
ACM Trans. Graph., vol. 28, no. 3, p. 24, 2009.

[21] C. Barnes, E. Shechtman, and D. Goldman, “The generalized patchmatch
correspondence algorithm,” in Proc. 11th Eur. Conf. Comput. Vis., 2010,
pp. 29–43.

[22] A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A. Efros, “Data-driven
visual similarity for cross-domain image matching,” ACM Trans. Graph.,
vol. 30, no. 6, p. 154, Dec. 2011.

[23] S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of mid-
level discriminative patches,” in Proc. 12th Eur. Conf. Comput. Vis.,
2012, pp. 73–86.

[24] M. Aubry, B. C. Russell, and J. Sivic, “Painting-to-3D model alignment
via discriminative visual elements,” ACM Trans. Graph., vol. 33, no. 2,
p. 14, Mar. 2014.

[25] M. A. Fischler and R. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[26] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, nos. 285–296, pp. 23–27, 1975.

[27] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,”
Proc. SPIE, vol. 1611, pp. 586–606, Apr. 1992.

[28] H. Shao, T. Svoboda, and L. V. Gool, “Zubud-zurich buildings database
for image based recognition,” Comp. Vis. Lab, Swiss Fed. Inst. Technol.,
Switzerland, Tech. Rep. vol. 260, 2003.

[29] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world from
Internet photo collections,” Int. J. Comput. Vis., vol. 80, no. 2,
pp. 189–210, 2007.

[30] G. Bradski, “Opencv library,” Dr. Dobb’s J. Software Tools, 2000,
Art. no. 2236121.

[31] A. Vedaldi and B. Fulkerson. (2008). VLFeat: An Open and
Portable Library of Computer Vision Algorithms. [Online]. Available:
http://www.vlfeat.org/

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

MORAGO et al.: 2D MATCHING USING REPETITIVE AND SALIENT FEATURES IN ARCHITECTURAL IMAGES 4899

Brittany Morago received the B.S. degree in digital
arts and sciences from the University of Florida
in 2010, and the Ph.D. degree in computer sci-
ence from the University of Missouri, Columbia,
in 2016. She is currently an Assistant Professor with
the Department of Computer Science, University of
North Carolina at Wilmington. Her research interests
include computer vision and graphics. She was a
recipient of the NSFGRF and GAANN fellowships.

Giang Bui received the B.S. and M.S. degrees
from the Vietnam National University of Hanoi in
2004 and 2007, respectively. He is currently pur-
suing the degree with the University of Missouri,
Columbia. He was a Research Assistant with the
Computer Graphics and Image Understanding Lab-
oratory under the supervision of Dr. Y. Duan.
His research interests include image and video
processing, 3-D computer vision, and machine
learning.

Ye Duan received the B.A. degree in mathematics
from Peking University in 1991, and the M.S. degree
in mathematics from Utah State University in 1996,
and the M.S. and Ph.D. degrees in computer science
from the State University of New York, Stony Brook,
in 1998 and 2003, respectively. From 2003 to 2009,
he was an Assistant Professor of Computer Science
with the University of Missouri, Columbia. He is
currently an Associate Professor of Computer Sci-
ence with the University of Missouri, Columbia.
His research interests include computer graphics and

visualization, biomedical imaging, and computer vision.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on March 25,2023 at 20:44:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

